Vectorfield

1.2.4, A vectorfield is a field of bound
vectors, one defined at (and bound to)
each and every point of the state space,
Here only a few of the vectors are
drawn, to sugegest the full field.
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|~ 4| The state space, filled with trajectories, is
WA /17| called the phase portrait of the dynamical
/ / /,: / .
il /iy- system. The velocity vectorfield has been
derived from the phase portrait by
differentiation.

We regard this vectorfield as the model for
the system under study. In fact, the phrase
dynamical system will specifically denote this
vectorfield.

(Annoyingly, some folk use the term phase space where
we are using state space. Sorry.)
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Trajectory:

the evolution

of a specific system
over time, from

some initial conditions

MA /MSc Connectionism

] /

—

K\"“H /

1.2.9. Given a state space and a dynamical system (smooth vectorfield), a curve in the
state space is a frajeclory, or integral curve, of the dynamical system if its velocity vecior
agrees with the vectorfield at each point along the curve. This means the curve must evolve
50 as (o be tangent to the vectorfield at each point, as shown here. The point on the trajec-
tory corresponding to elapsed time zero, #y, is the indtial state of the trajectory.




In a deterministic dynamical system, trajectories never
cross. Why!
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Parameters and Variables

If we observe a system for a while, the things which change while we
observe it are naturally called variables.

Things which characterize the system, but which don't change while
we watch it, are parameters of the system.

For some purposes, my bank balance might be a variable, and interest
rates might be a system parameter

For other purposes, interests rates might be regarded as a variable.

In a network, activations might be variables, and weights be
parameters, but weights change slowly over time, so we need to
consider, not one system, but a family of systemes.
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Parameters:

Serve to pick out a specific instance of a dynamic system
from a family of related systems.

Often, we are interested in the whole family: how does
the vector field change as the parameters are altered!?

E.g. the length of a pendulum
the mass of a planet
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A worked example: the simple pendulum



The pendulum may be the most classical example of the dynamical modeling process. It has a two-
dimensional state space, and a dynamical system established by Newton.

This model assumes that the rod is very light, but rigid. The hinge at the top is perfectly frictionless.
The weight at the lower end is heavy, but very small. It moves in a vacuum. The force of gravity

always pulls it straight down.

These idealizations describe the modeling assumptions in this example, called the simple
pendulum.

2.1.1. If A4 denotes the angle of elevation of the pendulum and F the force of gravity, then
F cos A is the pull along the rod, and F sin 4 the force turning it, as shown here.
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A is the angle of elevation. Itis a
circular variable

2.L2, The angle of clevation, A,
parameicrizes a circte, That is, values
Ord can be any real number, but A =0
and A = 27 denote the sam angle. The
angle A represents a point of the circle
It i3 called an grpilar variable
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R is the rate of rotation. It can
be any real nhumber

2.1.3. Lot B dencee the rate of rotation
o the rod ot a given moment. This mte

s

g is alsor observable, by radar for exam

2% ! ple. In Newton's model, this parameter

s 5 k 15 inciuded, along with :.hun-r_;,;lr_-.d, as
A deseriptor of the stae of the pen

dulum. The rate of romtion, ¥, may
have any real number as its value. It
represents a point of the real number

line,




2.1.4. The two parameters, A and R,
together locate 2 point on a circular
cylinder. This is the state space of
Newton's model, The vertical circle in
the center of this cylinder denotes the
states of zero angular velocity, R = 0.
The straight line from front to back, at
the bottom of the cylinder, is the axis
of zero inclination., 4 = 0, where the
pendulum is lowest.
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2.1.5. Atthe origin, defined by (4,R) = (0,0), the pendulum is at rest at its lowest POSition.
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Moving the pendulum a little to the left and then letting it go with no shove causes it
to swing indefinitely. Remember, there is no friction in the hinge and no air in the way.

The representation of this motion as a trajectory in Newton’s model is shown here in four
steps.

2.1.6. Step 1. Immediately after the I
pendulum is released, the represen-
tative point is on the circle of R = 0 1o
the left of the origin, moving away
from wus as the rate R increases.

Z.1.7. Step 20 It also moves 1o the
right as the inclination increases. Here
it has just reached the axis, 4 = (0, as the
pendulum goes by its bottom point.
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Z2.1.8. Step 3. It continues to move to
the right, moving towards us rather
than away, as R decreases. It reaches the
circle of R =10, when the pendulum
atrains its maximum swing to the right,

and turns to fall again toward its bot-
tom, A = 0. duium swings through bottom.

2.1.9. Step 4. It approaches us and
maoves to the left, as the pendulum falls.
It crosses the axis, 4 = 0, as the pen-

___'_—-—-_-____J — S —

Then the cycle begins again. The full trajectory in the state space, co rresponding to this
oscillating motion of the pendulum, is a cycle, or closed loop.
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Adding a
little friction
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As we gradually alter the parameters of a system, we may
cause a sudden shift in the asymptotic behavior:

Reducing gravity, would result in a slowed rate of fall,
until gravity became negative........

A system which tends towards a fixed point, may
develop oscillations

Oscillations may become irregular, or chaotic...

Or a complex system may collapse to a single fixed
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DST is the lingua franca of

Physics (Newtonian Mechanics)
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DST is the lingua franca of

Physics (Modern)

They are so cute when they
try to understand quantum
mechanics

Dynamic Systems Tutorial



DST is the lingua franca of

e
™

Biology
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DST is the lingua franca of

Economics (?2!!!)

Costs § Income $
- Resource -
L Market \

" T~ " Goods and

- services Goods and

services /

l

\K Product Market / - _./

Revenue $ \ - Consumer
Spending $

Figure 12.1
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DST does not give us a high road to the truth.

It may allow us to understand phenomena in a unique
and insightful way.
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The seductive appeal
of mechanics

Sir Isaac Newton

plwsto D 20CE Dramsluy L Slhudcher
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Newton’s Second Law of Motion

e

N 1,000 kg .05 m/s/s

_p

ma

Seeks to provide a deterministic account of the
relation between motions of massive bodies and the
forces acting upon them

DST approaches go far far beyond mechanics!
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The relevant features of components are described by
two numbers per component

Position } . @ﬁmﬁ

Velocity Xx

Dynamic Systems Tutorial



In the domain of mechanics, where we seek to account
for the motion of massive bodies, we know what
variables to choose. Position and Velocity of point
masses. Always.

The description of the lawful change of state over time
extends far beyond mechanics.

In most domains, and for most systems, we will not
have an explicit dynamic available to us.

But the language of dynamics continues to be of use in
describing systems and their interactions.
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This works for discrete dynamical systems too:
State describes the entire system at X ¢

A dynamic is a rule expressing X ¢+| = f(X ¢,...)

Most of what follows describes continuous
dynamical systems, but we will use discrete systems
where it can provide us with useful examples.
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DEFINITION.:

A Dynamical System comprises
[I] A state description

[2] A rule governing state change over time
(= a dynamic)
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We might consider the “system” to be just a few pieces
of the body
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Or the system might be the whole body:

Or body + tool
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Or multiple bodies ...
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Important point:

We do not know in advance what the “system” is
that we are dealing with. That will depend on the
phenomenon or behavior being studied.

Related point:

There is no point in arguing that something is or is not a
dynamical system. DST may provide a useful way of
regarding a system, or it may not.
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Thought for the day

Heisenberg: Science alters and refashions the object of
investigation. In other words, method and object can no longer
be separated.
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Suppose we have some dynamic system which we
are fortunate enough to be able to express as a
differential equation(s):

dx
E — f(X7P)

We might want to know how a specific instance of
this system behaves over time.



For example, we have an equation describing a
simple harmonic oscillator, such as an ideal mass-

spring system:

d:z:l
—_— = sz (x1 Is position; x2 is velocity = rate of change of position)
dt
dx .
i But we would like to have

—kx .
dt an equation for how x;

changes over time




In this simple case there are means (*waves hands™) to go
from the differential equation(s):

d:Ul

_— :L'

dt :
dIQ
— = -k
dt =

To an explicit statement of how the position, x7, varies
as a function of time:

21(t) = 21(0)cos(y/(k)t) + z2(0)sin(y/ (k)t)

which describes a particular system, starting at (x+(0),x2(0))

This is known as a solution to the original equation(s)



But for any reasonably complicated (and hence
interesting) system, we do not have such means.

This means we cannot usually use a dynamical
analysis to predict the future state of a system
as a function of time.

The absence of this kind of solution does not
stop us learning many other kinds of information
about the system we are studying.



If we can not solve a system analytically, what
can we say about it?

Qualitative analysis:

Transient response to perturbation
Asymptotic behaviors - Attractors
Stability properties

Structural stability

Dimensionality
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Attractors, Transients, Initial Conditions

To what kinds of behaviour The short-term?
does a given system tend
over the long-term!?
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For a given set of parameters, and a set of initial
conditions, we can watch a system and see what its long-
term (asymptotic) behaviour is.

A rolling ball comes to rest at the bottom of the hill

A frictionless ideal mass-spring system oscillates regularly

Weather patterns display chaotic (non-random, but non-
predictable, behaviour)
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Attractors

If, over the long-term, the system occupies only a limited
part of its state space, and if when perturbed to another
part, it returns to the former, that part is called an attractor.

That volume of state space

There are exactly three kinds of attractors in a deterministic
dynamical system.
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The Point Attractor

Trajectories converge to a
single point in state space.

rO]

Here, a pendulum (state space = position x velocity) runs
down and stops. Always.
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TIME a | |
<1 Here is the trajectory in

state space (position &
| velocity are the variables)

The time series of a
plucked string
decays.
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The Limit Cycle

An invariant trajectory is
repeatedly traced out
In state space.

Any system displaying a limit cycle
behavior may be called an oscillator

Limit

1 / Cycle

&
-

Phase is straightforward to define for a limit cycle.
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Point Attractor Limit Cycle Attractor
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The Chaotic Attractor

The system occupies a finite .
subset of state space, but N

without repetition.

Two trajectories that start
very close will diverge &S
rapidly, losing all mutual predictability —, .~

Dynamic Systems Tutorial



A chaotic attractor is a small part of the state space
in which the system is to be found, but without any
simple repeating structure.

Lorenz attractor, two very similar starting points
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Phase Space: Trajectories Solutions: x, (Blue), x, (Red)

0 10 15 20 25 30

Negligible difference

005

e

®
X, - X, |

— X YT v = Iy ! - = CI:12>

Two trajectories that evolve from *almost™ the same initial
conditions (x1 = (0,1,0); x2 = (0, 1.001, 0))






Induction of a limit cycle
attractor (to be done in lab)

lnput: 11010
Output: 10011

Test: 111 1..... 111

ourput

~—

context units

O
hidden units EER] TN
O

input

FIGURE 4.27 Sinlplc recurrcent network architecture used to learn the
odd /even task. Context units store the state of the hidden units from
the prior time step.

MA/MSc Connectionism
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FIGURE 4.28 Performance of the simple recurrent network while
learning the odd/even task at several points in time (measured in
cycles). Generalization occurs at 17,999 cycles but is limited. One
learning cycle later, however, the network is able to extend the
generalization indefinitely.



In lab 9:

You will make smooth gradual changes to the network
parameters (weights).

At some point, the network behavior changes
qualitatively. That is, it went from doing one kind of thing,
to doing a different kind of thing.

It went from a point attractor to a limit cycle attractor.

A qualitative change like this is known as a bifurcation.



Worked example: the logistic map
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Example: the logistic map

Ty = ray(l — xy)

http://tuvalu.santafe.edu/~joshua/LogisticTools.html
or

http://cogsci.ucd.ie/Connectionism/Labs/logistic/logistic.html

This simple dynamical system illustrates point attractors,
limit cycle attractors, bifurcations, chaos, sensitivity to
initial conditions, etc.


http://tuvalu.santafe.edu/~joshua/LogisticTools.html
http://cogsci.ucd.ie/Connectionism/Labs/logistic/logistic.html

Xt+1

How the logistic app works.

For a given value of r, we plot X¢+1 as a function of x¢. Xt
That 1s the brown line.

We then pick a starting value, Xo.

We use xo to work out x1,2,3.... The quick way to do this 1s
to draw a line up to the brown curve, then over to the
blue diagonal (the line y=x), back up to the curve, back
to the blue diagonal, etc. (Make sure you understand
why this works).



After many 1iterations, the system will have settled down
to an attractor. This may be a single value (e.g. r=2)

or a periodic attractor with period = 2, 4, 6, etc

or 1t may be a chaotic attractor.

These asymptotic values are 1llustrated 1n this plot:

1.0

0.8 -




r=2.6 Point attractor
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Ll_o

) A Logistic Map Cobweb Plot, r=2.7 . B Logistic Map Cobweb Plot, 1=2.7 L C Logistic Map Cobweb Plot, r=2.7

08

N4t d \

no 0z 0L 0o F:] 10 0h 08 10 N8

Figure 12. Cobweb plots of the logistic map pulling initial population values of ().1 (A), 0.5 (B) and
0.9 (C) into the same fixed-point attractor over time. At this growth rate parameter value of 2.7,
the Lyapunov exponent is negative.
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The system has
r=3.2 Period 2 attractor undergone a

bifurcation!
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r=3.7

Chaos!
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Chaos does not mean random!
It does entall unpredictability though.

A chaotic system exhibits sensitivity to initial
conditions

Two trajectories that start arbitrarily close together

will, over time, diverge, so that one contains no
information about the other
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A double-rod pendulum is a very simple system that
illustrates a chaotic evolution in time.

Starting from a very slightly different position will result
in an entirely different trajectory.
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Figure 13. Plot of two time series with identical dynamics, one starting at an initial populati
value of 0.5 (blue) and the other starting at 0.50001 (red). At this growth rate parameter value
3.9, the Lyapunov exponent is positive; thus, the system is chaotic, and we can see the nearby poir

' ;



When the qualitative form of the attractor layout
changes as we vary a parameter (here, r),

we say the system has undergone a
bifurcation.
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Bifurcation diagram for the logistic map
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Logistic Map Bifurcation Diagram

1.0

Population

0.2

0 0 A A A
370 375 3.80 3.85 3.90

Growth Rate

Figure 4. Bifurcation diagram of 100 generations of the logistic map for 1000 growth rate parameter
values between 3.7 and 3.9. The system moves from order to chaos and back again as the growth rate

is adjusted.
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The bifurcation diagram for the logistic map has
a fractal structure: self-similarity at all scales

['he logistic map
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Transients
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If attractors represent the ultimate fate of a
system, we might also be interested in the
short term behaviour:

These are transients
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Transients: as the network settles into the solution
state, error for individual patterns changes, and not

always monotonically.

Error

Training cycles

FIGURE 4.26 Frror plot during learning the XOR function. The heavy
line shows the mean error calculated over successive batches of 100
4 1 18 O .q - - 1 B = T e Cha e : 3 - - . A
raming cycles. The lighter lines show the error produced by cach of
the four pallerns which comprise XOR. Two of the patterns (00 and 10)
have monotonically decreasing error; the other two (01 and 11)
temporarily increase error hefore a solution is found which
accommodales all four patterns.
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When you pluck a guitar string, the vibration that
occurs Is a transient.

The equilibrium state is a state of rest (silence).
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Another key concept that finds expression in the
vocabulary of dynamic systems: Autonomy

Autonomy in everyday language: being a law unto
yourself.

Consider

*the autonomy of the body,

* or of the region of Catalonia,

* or of the Judicial branch of government.



There is a mathematical analogue

(That is all mathsmatics ever provides: a model or
analogue of things in the world)

If we have identified a system with state X(t)

Then we distinguish between an autonomous system:
dX/dt = f(x, parameters)

and a driven system:

dX/dt = f(x, parameters, t)

A small difference in the maths. A huge conceptual
difference.



500 msec

2.2. (a) Aggregates (about 100 mpu in diameter) of spontancously beating heart cells de-
rived from the ventricles of 7-day-old embryomic chicks. All cells in a single aggregate
are clectrically coupled and beat with the same intrinsic frequency. Photograph provided
by A. Shrier. (b) Transmembrane potential from an aggregate showing spontaneous elec-
trical activity and the eflect of a 20-msec, 9-nA depolanzing pulse delivered through an
intracecllular microclectrode. The control cycle length is T, and the perturbed cycle length
T. From Glass et al. (1984).

Chick Heart Cells
display their own
periodic behaviour.

A perturbation disturbs
the activity, but it soon
re-establishes itself.

The cells are exhibiting
autonomy.



In general, if a system is autonomous, it may be
perturbed or influenced, but its reaction to a perturbation
IS governed by its own dynamic.

Autonomy is the hall mark of the living.

Autonomous systems may enter into many kinds of
coupling, but they remain in principle decomposable.

Let's look at a counter-example: predator-prey relations
speak of mutual dependence that does not decompose
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Predator + Prey form a single system, not two
coupled systems

If we take away one, the other goes away as
well. Neither has its own, intrinsic, behavior.



