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Rethinking Innateness: Chpt 4
and

Intro to Dynamic Systems



Reading:
Van Gelder and Port, from Mind as Motion

Bechtel and Abrahamson article

Textbook, Chpt 4
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Introducing TIME: Recurrent Neural Networks
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Simple Recurrent Network (a.k.a. EIman Net)

output y(t)

hidden layer h(t)

input x(1)

h(t-1)
context layer

Bias units not shown



Recurrent Neural Networks

» Recurrence fundamentally changes the
network model

* A recurrent network is a dynamic system
* |ts behaviour is spread out in time

* Dynamic Systems Theory is increasingly
important in modeling cognition
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Simple
Recurrent
Network

» Task: predict next symbol

* Input:
manyyearsagoaboyandgirllivedbytheseathey.....

. Architecture is constrained a priori. No explicit
information about phonotactics is provided
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Error curve for a trained network
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What was learned?

» Task is not perfectly solvable
* Uncertainty is highest at word boundaries

» statistics of the distribution of phonemes
in the training set

* segmentation errors: "aboy’, not "a boy"
—c.f. "the nelephant” from "an elephant”

* inputs are arbitrary, localist (no similarity
relationships possible)
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wow!

* representations available to the child are richer
(phonemes group into classes, syllable structure, accent,
intonation all contribute)

* representations available to the child are poorer
(phoneme segmentation is not a given, linguistic and
non-linguistic information are mixed)

* Is the "next symbol" task similar to what a child does?

» Does a description of the statistical distribution of
symbols in a set require a neural network!?
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Prediction is one plausible way of doing error-
corrected learning, without a God-like teacher.

Compare to auto-association.....
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Chpt 4 topics:

» Types of change
- Rate of Change

- Dynamic Systems
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Patterns of developmental change

* Development, and the emergence of the mind, is
characterized by change at many levels and timescales

* Patterns of change contain essential information about
the underlying processes and their interactions

 Studying change over time takes us into Dynamic
Systems Theory

* DST has emerged as a competitor to the established
computational account of mind and brain
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Dynamics and Connectionism

» Change during training
» Change during processing (recurrent neural
networks)

 Treatment of time:

—sampling at points throughout training
—ordinal scale

—interval scale

* Discretization ("time step”, At)
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Linearity

X X

. imple...complex...intractible
Simple to model >imple...comp

May be modelled quantitatively

Rare? o
or qualitatively
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Dynamical systems

* A system which can be described at any given time using
a set of numbers (the system state)

* The state of the system changes over time (a dynamic)

Examples: Child-on-a-swing
Ireland’s economy
Your brain
A falling marble

A Recurrent Neural Network
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We need some tools for talking about systems that change
over time

Dynamic Systems Theory provides us with those, but it
makes much use of differential calculus

Intuitive introduction to DST based largely on:

Dynamics: The Geometry of Behavior

Ralph H.Abraham and Christopher D. Shaw
Addison Wesley, 1992 (2nd ed)
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1.1.1. The actual state of this waffle
iron cannot be described completely by
a single observable parameter, such as
the temperature. But usually we find it
convenient to pretend that it can. This
pretense is an agreement, the conven-
tional interpretation, within the
modeling process. It is justified by its
uscfulness in describing the behavior
of the device.
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We could describe the state
of this waffle iron in many
ways.

To model its behavior as a
waffle iron, temperature
might prove to be a useful
variable.

Selection of state variables is

a modelling decision, not a
/ matter of fact.

What is the system!




Any variable we choose may
or may not be a good
indicator of the relevant state
of a complex system.

George’s temperature
probably correlates better
with his health than his
honesty.
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TEMPERATURE
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For both these examples, the state space is the real
number line.
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A series of observations If time is shown
can be labeled with their explicitly, it adds an
respective times extra dimension
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| Ear attitude and fang
exposure might be used
to model the emotional

| state of a dog. (Konrad
| Lorenz and Christopher Zeeman)

s
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Numerical
observations allow
simple black box
modelling. Here, we
measure current and
voltage.
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Each point is associated with a specific observation.
Change in the system over time is represented as a
trajectory in state space
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A sequence of

observations of 2
variables defines a
specific trajectory

Note: time is hot shown
explicitly
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While the state space does not have time as a
dimension, we can add it to obtain a time series.
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The time series and the state space representations are
closely related.
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Observing more parameters leads to models of higher dimensions.
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1.1.12, Supposc that at 7 am, this athlete observes three of his body parameters (say
temperature, blood pressure, and pulse rate), records these three data as a point in three-
dimensional state space,
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Many phenomena require geometric models that are not simply coordinate spaces. In
dynamical systems theory, the geometric models used are manifolds.

1.1.13. Here are some examples of manifolds. Other examples will arise in later chapters.
They are made of pieces of flat spaces, bent and glued together.
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At this point, the history of real system has been represented
graphically, as a frajectory in a geometric state space. An alternative
representation is the time series of the trajectory.

The time series makes the passage of time explicit.

The state space representation does not make the passage of time
explicit.

When we use a state space representation, we are trying to
characterise the dynamic system in an abstract fashion, not tied to any
one set of observables. For example, we wish to describe “a
pendulum”, and not just “this specific pendulum, right here”.
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An abstract characterisation of a dynamical system can be understood

as a vector field.

1.0

2D

This demands that we be able to make sense of an instantaneous rate
of change for each possible state.

This is the innovation of the differential calculus.



Let us say a system shows a
change, C, between two points
in time, tp and t;

Looking at C alone, we do not

| know if this is a big change or a
small change -- it depends on the
amount of time that passed!




Now we scale C by the

amount of time that passed:

L V=CIT




1.2.1. On this trajectory, the states
obseved at two different times, £, and
t;, are connected by a bound veclor,
represented here by a line segment
pointed on one end. Let € denote this
bound vector.
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1.2.2. The average wvelocity of the
change of state, ', is the vector start-
ing at the point labeled 7, on the curve,
and directed along the vector of change
of state, C, but divided by T, the time
clapsed between i, and £, . Let V denote
this vector, V=C/T. It represemts the
average speed and direction of the
change of state.




If we look at how V changes as
we make the time interval small
... we end up with the
instantaneous rate of change

o x(t+At) —z(t) dx
,ﬁ}%ﬂo At dt
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- r(t + At) — x(t) _dx
At—0 At dt

We are usually concerned with change (say, in x) w.r.t. time (t),
but the concepts allow us to express change in one variable
(y) w.r.t.another (x).

Yyl +Azr) —y(r) dy
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Cue a Tom Lehrer Song
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