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Infants’ responses in speech sound discrimination tasks can be nonmonotonic over
time. Stager and Werker (1997) reported such data in a bimodal habituation task. In this
task, 8-month-old infants were capable of discriminations that involved minimal con-
trast pairs, whereas 14-month-old infants were not. It was argued that the older infants’
attenuated performance was linked to their processing of the stimuli for meaning. The
authors suggested that these data are diagnostic of a qualitative shift in infant cognition.
We describe an associative connectionist model showing a similar decrement in dis-
crimination without any qualitative shift in processing. The model suggests that re-
sponses to phonemic contrasts may be a nonmonotonic function of experience with lan-
guage. The implications of this idea are discussed. The model also provides a formal
framework for studying habituation–dishabituation behaviors in infancy.

In the course of the 20th century, scholars of cognitive and linguistic development
amassed a wealth of knowledge about the young child’s evolving repertoire of
communicative behaviors (e.g., Jakobson, 1941/1968; Stern & Stern, 1907; see
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Bar-Adon & Leopold, 1971, for a collection of historic readings and Fletcher &
MacWhinney, 1995, and Barrett, 1999, for more recent developments). Young
children’s cognitive and linguistic development often appears to proceed in stages.
Performance in a given task is rarely a monotonic slope from outright failure to
complete success. For example, from early in life until the age of about 8 months,
infants respond in a categorical fashion to phonemic contrasts—even those not ap-
pearing in their native language. On the other hand, older infants and adults find
such non-native contrasts difficult to detect (Best, McRoberts, LaFleur, & Sil-
ver-Isenstadt, 1995; Trehub, 1976; Werker & Lalonde, 1988; Werker & Tees,
1983, 1984a; but see Best, McRoberts, & Sithole, 1988).

It is tempting to interpret such qualitative shifts in behavior as evidence of qual-
itative shifts in the way in which the developing infant is processing the informa-
tion in a given task. For example, Werker and Pegg (1992) argued that the changes
in infants’ performance in speech-sound discrimination tasks are diagnostic of at
least three, and possibly four, distinct stages in infants’ speech processing. Such
stages are hypothesized to reveal a functional reorganization over time: A stimulus
arriving at Time 1 will be processed in a particular fashion, and the same stimulus
arriving at Time 2 will be processed in a different fashion. A variant of this argu-
ment was presented by Stager and Werker (1997) in their report of a series of ex-
periments conducted with 8- and 14-month-old infants (see also Werker, Cohen,
Lloyd, Casasola, & Stager, 1998).

In this article, we begin by describing Stager and Werker’s (1997) findings. We
then suggest an alternative account of these data, in which a change in infants’ be-
havior does not require a change in processing between Time 1 and Time 2. We
consider whether changes in infants’ ability to discriminate between particular
stimuli necessarily signals a change in the underlying processing of those stimuli;
and we introduce a method for the qualitative evaluation of infant habituation data
using neural networks.

Stager and Werker (1997) used a bimodal habituation task to investigate the
possible relation between word learning and speech-sound discrimination. In this
task, infants are habituated to images and sounds presented at the same time. The
general outline of the task is as follows: An infant is habituated to a bimodal stimu-
lus pair presented simultaneously in auditory and visual modalities. Stager and
Werker argued that such a task invokes mechanisms that subserve the learning of
words; that is, learning that a given label (sound) goes with a given object (image).
Following habituation, a change is made to the sound but not to the image. The ex-
tent to which the infant now dishabituates to this new sound–image combination is
an index of the specificity of the binding between the previously habituated sound
and the (unchanged) image. Infants who have habituated to a given sound–image
combination will dishabituate only if they perceive the difference between the
sound heard during the habituation phase and the sound heard during the subse-
quent testing phase. This difference in habituation is operationalized as a differ-
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ence in looking times between trials in which the stimulus has changed (switch
trials) and trials in which it has stayed the same (same trials).

Stager and Werker’s (1997) data are shown in Figure 1. Within the context of
label–object associative learning, 8-month-olds discriminate the label [bIh] from
the label [dIh] (Figure 1, Experiment 2, left-hand pair). Somewhat surprisingly,
14-month-olds appear not to do so (Figure 1, Experiment 2, right-hand pair); how-
ever, the older infants can discriminate between a more distinct pair of labels such
as [lIf] and [nim] (Figure 1, Experiment 3); these 14-month-old infants can also
discriminate [bIh] from [dIh] in a simple auditory discrimination task (Figure 1,
Experiment 4). Furthermore, the 14-month-olds were not capable of discriminat-
ing [bIh] from [dIh] when the task involved learning about two label–object tokens
(i.e., [bIh] + object 1 and [dIh] + object 2; Figure 1, Experiment 1). What are we to
conclude from such data? Stager and Werker argued that, taken together, these
data suggest that a functional reorganization of the language system occurs be-
tween the ages of 8 and 14 months. As a consequence of this reorganization, in-
fants of different ages react differently to identical stimuli. Younger infants have
not, it is argued, been provoked into a word-learning stance by these bimodal stim-
uli. Older infants, on the other hand, respond to the same input by trying to map the
sounds they hear onto meaning (i.e., they treat the new sounds as to-be-learned
words). This different stance to the same stimuli results in the two groups perform-
ing different processes, and different behaviors are therefore observed in the two
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FIGURE 1 Stager and Werker (1997) infant data. Experiment 1: A habitua-
tion–dishabituation task with two label–object pairs. Experiment 2: A habitua-
tion–dishabituation task with a single label–object pair. Experiment 3: As Experiment 2, but
with dissimilar labels. Experiment 4: Simple auditory discrimination. Data adapted with permis-
sion from Nature, 388: 381–382 (1997). Copyright 1997, Macmillan Magazines, Ltd.



groups.1 Thus, 14-month-olds listen for less phonetic detail during the bimodal ha-
bituation task than do 8-month-olds, presumably because the older infants are pro-
cessing the stimuli differently (Stager & Werker, 1997, p. 382). In terms of Werker
and Pegg’s (1992) four-stage model of phonological development, the younger in-
fants in the Stager and Werker study are in the process of refining their phonetic
code to that of the ambient language, presumably by establishing that certain
sounds are much more commonly heard than others; in contrast, the older infants
are performing phonemic processing; that is, learning about the sounds that desig-
nate meanings. According to this account, the ability to discriminate a minimal
pair of speech sounds ([bIh]–[dIh]) that is observed at 8 months is not subsequently
observed at 14 months because of a reorganization of the infant’s perceptual sys-
tem. During this time, the infant has changed his or her stance to such bimodal
stimuli. This reorganization, according to Werker and colleagues, serves to bias
the perceptual system so that in two identical tasks, younger infants will detect a
fine phonetic distinction, whereas older infants, being biased toward learning
words, fail to make the same fine phonetic distinction. According to this view, the
processing system of older infants differs radically from that of younger infants.

In making their argument for a change from speech-sound discrimination pro-
cessing to word-learning processing, Stager and Werker (1997) were careful to ex-
clude an additional possible explanation of the findings from Experiments 2 and 3.
It is logically possible that the 14-month-olds failed the fine ([bIh]–[dIh]) discrimi-
nation in the bimodal habituation task not because they were processing for word
meaning, but simply because they were incapable of discriminating the auditory
stimuli. To control for this possibility, Stager and Werker performed a final study
(Experiment 4) in which 14-month-olds were presented with a [bIh]–[dIh] discrim-
ination in the presence of a black-and-white checkerboard rather than an object.
Such an approach has commonly been used to study speech-sound discrimination;
it is usually argued that the checkerboard does not constitute an “object.” In this fi-
nal study, the 14-month-olds were able to perform the discrimination: They
showed increased looking during switch trials, even with the fine [bIh]–[dIh] dis-
crimination. The authors argued that this further strengthened the possibility that
infants at 14 months were processing the stimuli in Experiments 2 and 3 in a quali-
tatively different fashion from the way in which the 8-month-olds were processing
the same stimuli.
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1Throughout this article, the word task is confined to the stimuli presented to (and responses recorded
from) our subjects (human or artificial). Processing and process refer to any algorithm that may be in-
ferred to be carried out within the learner (human or artificial). Thus, if a learner decides that a particular
stimulus pair should be treated at Time 1 as a piece of evidence about sound patterns in English and at
Time 2 as a piece of evidence about word meaning, this would constitute a shift in processing. It would
not, in our terminology, constitute a shift in task, because stimuli and dependent variable are fixed be-
tween Time 1 and Time 2 by decision of the experimenter.



The relation between a change in behavior and a change in mechanism, how-
ever, is not straightforward (Brainerd, 1978; Ingram, 1989; Kemler-Nelson,
1984). In particular, it is incorrect to assume that a change in observed behavior
signals a change in underlying processing or that qualitative shifts in performance
imply qualitative shifts in processing (e.g., Elman et al., 1996; Thelen & Smith,
1993). For example, connectionist networks are simple associative systems that
can show abrupt shifts in behavior as a consequence of the continuous adaptation
of a single processing system (Elman et al., 1996; Mareschal & Shultz, 1996;
McClelland, 1995; Plunkett, Sinha, Møller, & Strandsby, 1992). Moreover,
connectionist networks have recently been used to model early infant behavior
across a range of different domains (Mareschal & French, 1997, 2000; Mareschal,
Plunkett, & Harris, 1999; Munakata, 1998; Munakata, McClelland, Johnson, &
Siegler, 1997; Quinn & Johnson, 1997). This article extends such work by explor-
ing whether simple associative systems, whose adaptive properties do not change
over time, can account for the apparent discontinuity in processing reported by
Stager and Werker (1997).

In this article, we show how a simple learning device, an associative neural net-
work, changes in its response to external stimuli as a result of experience. Our
goals are threefold. First, we wish to suggest that behavior that changes over time
does not necessarily signal a shift in underlying mechanism (or strategy) on the
part of a learner. Second, we present a method for the modeling of habituation phe-
nomena in infants. Third, we make some predictions based on the behavior of the
model in the tasks we have modeled. We begin by describing a framework for
modeling habituation–dishabituation studies using connectionist networks. This is
followed by a description of an autoencoder model of infant performance in a
homologue of the bimodal habituation–dishabituation task used by Stager and
Werker (1997). Finally, the model’s performance is evaluated and implications for
understanding infant behavior are discussed.

MODELING RELEASE FROM HABITUATION

Habituation techniques are based on the assumption that infants direct more atten-
tion to unfamiliar or unexpected stimuli than to familiar or expected stimuli. The
standard interpretation of this behavior is that infants are comparing an input stimu-
lus to an internal representation of that stimulus (e.g., Charlesworth, 1969; Cohen,
1973; Sokolov, 1963). As long as there is a discrepancy between the information
stored in the internal representation and the visual input, the infant continues to at-
tend to the stimulus. While attending to the stimulus, the infant updates his or her
internal representation. When the information in the internal representation is no
longer discrepant with the visual input, attention is directed elsewhere. Thus, when
a familiar object is presented, there is little or no attending, because the infant al-
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ready has a reliable internal representation of that object. In contrast, when an unfa-
miliar or unexpected object is presented, there is an elevation in the amount of at-
tending, because a new internal representation has to be constructed or an existing
representation adjusted. The degree to which a novel object differs from the set of
existing internal representations determines the amount of adjustment and, there-
fore, the duration of attention.

We used a connectionist autoencoder to model the relation between attention
and representation construction (Mareschal & French, 1997, 2000). An
autoencoder is a feedforward connectionist network with a single layer of hidden
units. The network learns to reproduce on the output units the pattern of activation
across the input units. Thus, the input signal also serves as the training signal for
the output units (hence the word autoencoder). If there are fewer hidden units than
either input or output units, there is a bottleneck in the flow of information through
the network. In such an autoencoder, learning consists in developing, at the hidden
unit level, a compacted internal representation of the input that reliably contains
relevant information from the original input. Information is compressed into an in-
ternal representation and then expanded to reproduce the original input. The suc-
cessive cycles of training in the autoencoder are the iterative process by which a
reliable internal representation of the input is developed. The reliability of such a
representation is tested by expanding it and comparing the resulting predictions to
the actual stimulus presented. The difference between the observed output and the
actual stimulus presented is termed network error.

This modeling approach has three implications:

1. Provided that the representations encoded by the network bear some rela-
tion to those encoded by the infant, looking times for infants will be posi-
tively correlated with error values for networks: The greater the error, the
longer the looking time.

2. Prolonged exposure after looking (error) has reached an asymptote will not
further improve memory of the stimulus in an infant (or network).

3. The degree to which looking time (error) increases on presentation of a
novel stimulus will be governed by the similarity between the novel stimu-
lus and the familiar stimulus.

On the basis of these predictions, presenting a series of similar stimuli will lead to a
progressive reduction in looking time (error), both for the particular stimuli pre-
sented and for stimuli that are novel but bear some perceptual resemblance to those
already presented. This holds both for infants (where looking time is the measured
variable) and for autoencoders (where output error is the measured variable). Thus,
throughout the treatment offered in what follows, network error can be thought of
as analogous to looking time in the behavioral experiments.
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THE MODEL2

To model infant performance, connectionist networks were given experience of an
artificial “language” and then tested on their ability to learn specific label–object
associations. This approach gives rise to a two-stage procedure, in which a lan-
guage-exposure phase is followed by an experimental phase. The experimental
phase is further subdivided into two stages: habituation and subsequent testing.

Networks were taught to autoencode labels and objects, in a homologue of
looking and listening by the infant. Three-layer networks were trained to repro-
duce on their output units the label–object pairs that had been presented at the input
(Figure 2). This task requires the networks to develop an internal representation
across the hidden unit layer, merging the information from these two sources of in-
formation (e.g., Chauvin, 1988; Plunkett et al., 1992). Networks had 36 linear in-
put units, 18 hidden units, and 36 output units. The activation function of the
hidden and output units was the commonly used logistic (“squashing”) function.

Language exposure was modeled as follows: All the networks were trained to
autoassociate the same randomly generated bank of 240 label–object pairs. Net-
works were presented with successive label–object pairs, randomly selected from
the bank of 240 available pairs. After each label–object pair presentation, connec-
tion weights were updated using the backpropagation learning algorithm
(Rumelhart, Hinton, & Williams, 1986). After each language exposure trial, the la-
bel–object pair was returned to the bank and another pair was selected at random.
To reflect the differential language exposure of the 8- and 14-month-old infants,
“older” networks received more language exposure trials before testing than did
“younger” networks.

The Coding Scheme

The artificial language to which networks were exposed was created in the follow-
ing manner: Labels were represented as consonant–vowel–consonant (CVC)
strings, with each phoneme represented as six binary bits (cf. Plunkett &
Marchman, 1991). The six bits in each phoneme represented the following fea-
tures: consonantal (one bit), voiced (one bit), manner (two bits), place (two bits).
Label input vectors were generated by randomly selecting a consonant, then a
vowel, and then a consonant, from a list of 20 consonants and 12 vowels.3 There are
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4,800 ways to make this selection (20 × 12 × 20 = 4,800). Our artificial language
comprised 240 labels: The input vocabulary therefore consisted of a 5% random
sampling of the available CVC space. Each label was then associated with a differ-
ent object (image, or referent). Within the context of modeling Stager and Werker’s
(1997) task, the visual stimulus (object) is of no intrinsic interest except inasmuch
as it provides a certain amount of information to be bound with specific labels. (The
critical manipulation made by Stager & Werker concerned posthabituation shifts in
the auditory stimulus only.) Objects were therefore also coded as 18-bit binary vec-
tors, of the same degree of complexity as—and equivalent similarity structure
to—the labels. Object input vectors were generated by duplicating the list of 240
18-bit label vectors, shuffling this list, and assigning each of the resultant randomly
ordered object vectors to a label vector.

The Training Regime

The networks were trained4 according to a two-stage procedure. An initial lan-
guage-exposure phase was followed by an experimental phase. Networks were ini-
tially exposed to a linguistic environment in which label–object pairs were succes-
sively presented to the network on a predetermined, fixed number of occasions,
reflecting the “age” (language exposure) of the network at testing. Younger net-
works received 1,000 trials; older networks received 10,000 trials.

Following this language-exposure process, the experimental phase began, and
networks were habituated to a label–object pair. Finally, after habituation, the net-
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FIGURE 2 Network architecture.

4Networks were trained using the backpropagation learning algorithm (Rumelhart et al., 1986), with
the following parameter values: learning rate = 0.3, momentum = 0.15. Similar results are obtained with
a wide range of parameter values.



works were tested by presenting them with a dishabituation stimulus and observ-
ing the resultant error. As outlined earlier, the network error in the face of a
posthabituation stimulus is directly analogous to the duration of looking observed
when an infant is confronted with the equivalent combination of stimuli.

Networks were tested on homologues of each of Stager and Werker’s (1997)
four experiments. Stager and Werker’s Experiments 2 and 3 provide a sort of ca-
nonical form for this procedure and are therefore described first. During the habit-
uation phase, a network was presented with 100 habituation trials. Each
habituation trial used the same label–object pair (e.g., [bIh] plus a corresponding
object). During the dishabituation phase, the label segment of the input vector was
replaced by the to-be-tested label (e.g., [dIh]). Thus, in the dishabituation phase the
network was presented with a familiar object but a novel label, as had been the case
with the infants. Following Stager and Werker, we refer to this as a switch trial. In
contrast, during a same trial, the label–object pair presented was the same as that
used during habituation.

Minor modifications allowed this procedure to be used for modeling Stager and
Werker’s (1997) Experiments 1 and 4. In Experiment 1, two different label–object
associations had been presented to each infant during the habituation phase, in
contrast with Experiments 2 and 3, in which habituation was confined to the re-
peated presentation of a single label–object pair. In Experiment 4, infants of 14
months had been presented with the [bIh]–[dIh] auditory discrimination in the
presence of a checkerboard (i.e., a nonmeaningful referent), rather than in the pres-
ence of an image of an object (i.e., a meaningful referent). To model these experi-
ments, we adapted the procedure as follows: To model Stager and Werker’s
Experiment 1, two label–object pairs were used in the habituation phase. In each
habituation trial, one of these two pairs was selected at random to be presented to
the network. To model Stager and Werker’s Experiment 4, all input bits coding im-
age information were set to 0.5 (midway between the 0 and 1 binary values used to
encode object information), thereby conveying no information in object feature
space. A vector comprising a string of 0.5 values can be likened to an average of all
the features of objects the network has previously seen (cf. Shultz, 1998). These
modifications correspond to analogous modifications in the procedure used by
Stager and Werker for testing infants in Experiments 1 and 4.

There were 20 networks in each experimental group, all with different initial
connection weights. These were randomly set at the outset to values between –0.5
and 0.5, using a homogenous distribution.

RESULTS

Figure 3 illustrates the network performance. A comparison of Figures 1 and 3 re-
veals a striking similarity between the pattern of performance obtained with net-
works and that obtained with infants. In the data from Experiments 2 and 3, older
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networks showed poorer discrimination of the similar pair ([bIh]–[dIh]) than did the
younger networks; the older networks were nonetheless able to discriminate the
more distinct pair ([lIf]–[nim]). It is also important that the model captures an addi-
tional aspect of the Stager and Werker (1997) data. In Experiment 4, Stager and
Werker presented 14-month-olds with a checkerboard as the visual stimulus, rather
than with an object as in Experiments 2 and 3. The purpose of this experiment was
to rule out the possibility that the older infants were failing the behavioral task be-
cause they were incapable of discriminating [bIh] from [dIh] in any circumstances.
Infants did indeed discriminate the two stimuli [bIh] + checkerboard and [dIh] +
checkerboard. To model this, networks were given a habituation task in which the
object vector bits were all set to 0.5. Figure 3 shows that the older networks were
able to discriminate [bIh] + checkerboard from [dIh] + checkerboard, as were the
infants.

To further investigate the role of experience in the responses of the networks,
we compared networks of a range of “ages” (i.e., differing degrees of language ex-
posure) for their relative release from habituation. An index of relative novelty
preference was computed for each network as follows:

Novelty = (ErrorT – ErrorH)/(ErrorT + ErrorH) (1)

where ErrorT is output error when the network is presented with the test stimulus
and ErrorH is output error when the network is presented with the habituated stimu-
lus. This function can take values between 0% and 100%. The measure (shown in
Figure 4) is a normalized version of the difference in pairs of error scores shown in
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Figure 3, and it constitutes the Weber fraction for the given discrimination. That is,
if, as argued earlier, error score is analogous to looking time, or attention, then the
index of novelty in Equation 1 constitutes a measure of the amount of looking de-
voted to the difference between a pair of stimuli, normalized for the amount of look-
ing engendered by the stimuli themselves.

Each point in Figure 4 represents an average of the scores of 20 different net-
works. In total, 400 networks were investigated to address this developmental
issue. No initial network configuration (i.e., initial random setting of connection
weights) was used more than once. Two aspects of the data are especially worth
noting, because they constitute predictions of infant behavior.

First, novelty preference is nonmonotonic with age. For both similar
([bIh]–dIh]) and dissimilar ([lIf]–[nim]) pairs, novelty preference exhibits two
minimums in the range of language exposure evaluated. One minimum occurs at
around 1,000 language exposure trials. Overall, novelty preference reaches a mini-
mum at around 10,000 language exposure trials then increases again with further
language exposure. This sort of nonmonotonicity is reminiscent of human behav-
ior in the detection of non-native speech contrasts. Young infants are initially able
to make these distinctions but lose this ability at some point before their first birth-
day (Werker & Tees, 1983, 1984a); nonetheless, adults are, in certain circum-
stances, able to make these distinctions (Werker & Tees, 1984b).

Second, release from habituation follows a different time course for the two
types of stimulus pair. There is a period during which release from habituation will
occur for dissimilar pairs but not for similar pairs. Many accounts of habituation
assume the presence of a response mechanism in which a behavioral response is
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only observed once the novelty preference exceeds some threshold level (cf.
Bornstein, 1985; Lamb & Bornstein, 1987). Within the context of the model, if we
suppose that a behavioral response is observed only when novelty preference ex-
ceeds a 20% threshold, then younger, less experienced networks would manifest a
sensitivity to differences between both pairs, whereas older networks would only
appear to detect the difference in the dissimilar pair. We suggest that a similar
mechanism may explain the difference between 8- and 14-month-olds’ behavior in
Stager and Werker’s (1997) Experiments 2 and 3.

How can the developmental profiles of the novelty preference be explained?
The pattern of behavior underlying network performance is instructive here. The
behavior of the networks at test is governed by two factors: (a) the way in which
the network encodes the habituation stimulus during the habituation phase, and (b)
the inherent difference between the habituation and posthabituation stimuli. The
first factor is mediated by the network’s previous experience with language.
Connectionist networks extract the statistical regularities of the environments they
are placed in, so that the representations of linguistic knowledge in the networks
(in the form of connection weights) are continuously evolving in response to in-
creasing linguistic exposure. The second factor is a function of the (a priori) simi-
larity between the particular stimuli used. Thus, [bIh] and [dIh] are minimally
distinct, differing only in a single bit (which encodes place), whereas [lIf] and
[nim] differ in five bits (which encode place, manner, and voicing distinctions).

Table 1 shows the number of networks, out of 20, successfully habituating
(global RMS < 0.25) to the stimuli during the habituation phase of 100 training
trials. Like the novelty preference data in Figure 4, the number of networks ha-
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TABLE 1
Number of Networks Successfully Habituating to the Training Stimulus in 100 Trials

(Maximum = 20)

Habituation Regime (Labels Used Pre- and Posthabituation)

Number of Previous
Language-Exposure Trials Bih–Dih Lif–Neem

0 20 20
10 20 20
100 20 20
500 18 18
1,000 13 13
2,000 16 12
5,000 14 16
10,000 4 3
20,000 2 3
50,000 1 4



bituating is nonmonotonic with time. Early in development, all networks—irre-
spective of their start state—learn the habituation stimulus. Later, only a
proportion of networks successfully learn the habituation stimulus. This conse-
quence of language exposure drives the shape of the curves in Figure 4 (particu-
larly in the central portion of the figure, between about 500 and 10,000 language
trials). These developmental profiles arise as an interaction between the differ-
ential language experience of the young and old networks and the computational
requirements of the two test conditions (i.e., the [bIh]–[dIh] or [lIf]–[nim] habitu-
ation tasks). The networks’ responses to the habituation or posthabituation re-
gime will evolve, and this evolution is in turn dependent on the inherent
difference between the habituation and posthabituation stimuli. This issue is
considered further in the Discussion.

DISCUSSION

In this article we have presented a simple connectionist autoencoder model of in-
fant speech-sound discrimination. The model captures the infant habituation and
dishabituation data reported by Stager and Werker (1997) while assuming only a
single processing mechanism throughout development. Although the model pro-
vides a very close fit to actual infant behaviors, we would not wish to argue that in-
fant cognition can be reduced to simple autoencoder mechanisms. This model is a
first attempt to show how associative learning mechanisms, operating in conjunc-
tion with the construction of compressed internal representations that encode both
visual and auditory information, may account for infant behaviors. As with all mod-
els, we have made a number of simplifying assumptions. Nonetheless, the model
has explanatory value (in the sense that it provides a causal, mechanistic account of
how structure in the input stimuli causes the observed behavior) and predictive
value (in the sense that it can be used to make explicit predictions of novel infant be-
haviors). We discuss the simplifications and predictions of the model here.

Model Simplifications and Limitations

Qualitative changes in behavior can occur in an artificial learner (a simple associa-
tive neural network) without the need for qualitative changes in the algorithm
instantiated in that learner. Of course, this does not necessarily mean that the same
(or even a similar) process accounts for infant development. Nonetheless, it sug-
gests that a cautious observer of infant behavior would be well advised to consider
the possibility that this is how infants are doing what they are doing, given the sim-
plicity of the algorithm implemented here. Such an approach necessarily entails the
use of simplifying assumptions. We discuss these here.
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Selection of arbitrary parameters. We selected a 20% criterion when
comparing the responses of networks to [bIh]–[dIh] and [lIf]–[nim] distinctions.
Although this figure is not unrepresentative of human infants, it is nonetheless an
arbitrary one. Similar observations might apply to the selection of learning and mo-
mentum parameters and to our decision to consider 1,000 language trials as repre-
sentative of young networks and 10,000 trials as representative of older ones. In this
last case, inspection of Figure 4 suggests that although we might have suggested
other cross-sectional points, such as 500 and 50,000, rather than 1,000 and 10,000,
and still been able to draw the same conclusions, there are, in fact, many compari-
sons (e.g., 1,000 and 10,000 language trials with a 45% criterion) which would not
have worked.

Although these are valid caveats, two points need to be made. First, the model
stands as an existence proof of an alternative explanation of a set of data. As such,
the arbitrary selection of parameters is justified, so long as these are not obviously
unrepresentative of the situation we wish to model. Second, the broad phenome-
non we have outlined—the relative preservation of one contrast over another—is a
robust effect found over a wide range of parameter values, especially for learning
rate and momentum, but also for the ages of the young and old networks and for the
threshold criterion adopted. In particular, we stress that the principles illustrated
here—differential ages of acquisition for different contrasts, and nonmonotonicity
in a single processing algorithm—are not dependent on the selection of any partic-
ular value for any of the free parameters in the model.

Use of binary feature vectors, specified a priori. Our networks are not
exposed to real speech sounds. They “hear” (experience) binary vectors representing
a phonological feature description. We have built in the phonemic feature description
as part of our input to the model. But how does the infant know what constitutes a
phoneme (or phone)? At one level, this question represents an important general cri-
tique of the connectionist enterprise, which has been conducted extensively else-
where (see Fodor & Pylyshyn, 1988). Note, however, that we are not presenting a
complete model of phonemic development. Although the model has been expressed
in terms of the representation of phonemic features, the coding system is largely arbi-
trary. Indeed, in the case of the object vectors, it is wholly arbitrary. In the case of the
label vectors, as we have already stated, the input vector bits may be considered to be
representing phones just as much as phonemes. Even as phonemes, the vectors se-
lected represent a random selection of CVCs rather than an accurate sampling of
early input to infants. The phonemic feature description (Plunkett & Marchman,
1991) is capable of improvement to better capture the similarity structure in English
phonology (K. Plunkett, personal communication, July 1998); however, rather than
reduce the power of the framework we have presented, we believe that adoption of
this encoding scheme enhances the generality of our findings.

20 SCHAFER AND MARESCHAL



Identification of looking time with perceived novelty. In the earlier sec-
tion “Modeling Release From Habituation,” we argued that network error was anal-
ogous to infants’ looking time. This argument is based on the assumption that the
more novel the stimulus, the more infants will be inclined to look at it. This may be
an oversimplification. Hunter and colleagues (Hunter & Ames, 1988; Hunter,
Ames, & Koopman, 1983) have argued that infants progress from showing no pref-
erence, to a preference for familiar stimuli, to a declining level of interest in the fa-
miliar, and ultimately to a novelty preference of the sort described in the preceding
paragraph. According to this account, whether an infant in a standard habitua-
tion–dishabituation task will prefer the novel or the familiar stimulus depends on
three factors: (a) the amount of time the infant has had to learn about the habituation
stimulus, (b) the age of the infant, and (c) the complexity of the stimulus presented.
For example, older infants are known to habituate faster than younger infants, and
infants of a given age will habituate faster to simpler stimuli (Cohen, 1969; Hunter
et al., 1983); however, according to Hunter and Ames (1988), in the limit, infants of
all ages will ultimately show a novelty preference to stimuli. As a consequence,
given sufficient time to habituate, infants will behave according to Sokolov’s
(1963) model as discussed earlier. We therefore make the same simplifying as-
sumption as Stager and Werker (1997) did and assume that infants are showing a
novelty preference (in accordance with the Sokolov account of habituation) when
interpreting the infant looking behaviors.

Departure of the model from the behavior of older infants. Although
14-month-olds are not capable of the fine [bIh]–[dIh] discrimination in a bimodal
context (Stager & Werker, 1997, Experiment 2), it appears that 20-month-old infants
are capable of performing this discrimination (Werker, Corcoran, & Stager, 1999).
This apparent recovery in the ability to map minimally distinct novel words to refer-
ents is consistent with earlier findings, such as that of Garnica (1973). Indeed, mini-
mally contrastive pairs are usually defined in terms of adults’ ability to use such
mappings. Yet by our account, fine discriminatory ability remains below the hypo-
thetical 20% threshold. In other words, our account of the learning mechanism cannot
account for more mature performance.5 One possibility, therefore, is that our model
may be applicable only to younger infants—say, to infants in the sensorimotor period
(Piaget, 1954). Another, related, possibility is that other mechanisms are involved in
determining the responses of 20-month-old infants and of adults.

Another, more interesting—but speculative—suggestion is that the hypothe-
sized 20% novelty preference threshold does not remain constant with age. If the
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horizontal line in Figure 4 were sloped, perhaps from a relatively high value to a
relatively low one, it would be possible to encompass all the known data in a single
process. Young infants and adults would evince “switch” effects that rose above
threshold; older infants (at an intermediate period of exposure and whose category
structure was consequently in a transitional state) would not detect the effects of a
switch. Although hardly parsimonious, this explanation makes a sort of intuitive
sense: Adults, or experts in a cognitive domain, tend to be more sensitive to small
distinctions than do infants, or novices. A gradually reducing function for the criti-
cal value of the Weber fraction for detection of a categorical change is an attractive
idea; it remains to be explored further in this context.

A second limitation in our account of habituation behavior is that, in general, in-
fants tend tohabituate fasteras theygetolder (Bornstein,1985)whereas theolder the
network, the less likely it is to habituate to the test stimulus (Table 1). Data on the de-
velopment of infants’ habituation, however, relate predominantly to exclusively vi-
sual habituation; it is not clear that these data can be generalized to bimodal
presentations. Indeed, it has been explicitly argued that infants do not habituate to
such bimodal stimuli (Hirsh-Pasek & Golinkoff, 1996). Although this is clearly not
the case in the experiments under discussion—our approach and Stager and
Werker’s (1997) findings are both predicated on the notion that infants do habituate
in such circumstances—there is clearly some doubt about the application of
unimodalhabituation to thebimodal situation.More research is required in this area;
until such data are available, the performance of the networks in this study consti-
tutes a prediction of infant behavior. We discuss this further in the next section.

A third issue might be the adoption of 100 learning trials as the duration of the
habituation phase. Is this not rather a lot of trials? Would it not be more representa-
tive to have trained to a criterion anyway? In our view, the absolute number of tri-
als is not important. Similar results can be obtained with fewer habituation trials,
but this is not in itself the issue. We used networks to implement a particular theory
of perceptual learning in infants (i.e., classical conditioning; Rescorla & Wagner,
1972). What is important is the outcome of such learning, not the trial-by-trial be-
havior en route to that outcome. As to the issue of fixed versus criterial training,
both methods are used extensively in the cognitive development community
(Bornstein, 1985; Kellman & Arterberry, 1998); however, when modified to habit-
uate to a range of percentages of initial looking time (error), the key findings of this
study (nonmonotonicities and differential release from habituation) remain robust.

Model Predictions

Models have two principal functions: The first is to provide a coherent explanatory
framework within which to reason about some phenomenon; the second is as a
source of novel predictions about behavior. We believe that the model presented
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here provides a useful framework for the parameterization of learning in infants.
Does it lead to any predictions? A first prediction of our model arises from inspec-
tion of Figure 4, in which the index of novelty (Equation 1) can be seen to be
nonmonotonic with respect to time. The model predicts that for some habitua-
tion–dishabituation tasks, groups of infants will exhibit nonmonotonic behavior.
Over successive time periods, the elicitation of such contrasts will initially be rela-
tively easy, then relatively hard, and then relatively easy again. In fact, such behav-
ior has already been observed with respect to this task. When presented with a task
that defeated the 14-month-olds ([bIh]–[dIh] discrimination in a one-object bi-
modal procedure; Stager & Werker, 1997, Experiment 2), 20-month-olds were able
to make the fine discrimination (Werker et al., 1999). To treat such a result as con-
firmation of our prediction is premature for two reasons, however. First, perhaps
20-month-olds are responding in an adultlike fashion. But at the end of the track in
Figure 4—that is, at 50,000 language trials—our networks have not recovered
above the 20% criterion. Second, although the U-shaped function may well be a
general feature of this type of learning (e.g., Plunkett et al., 1992), it would be more
prudent to demonstrate the phenomenon in networks trained with a more realistic
vocabulary and phonemic feature description.

A second prediction arises from the way in which we have formalized our de-
scription of how the infant might be learning. We have made the minimal assump-
tion that the infant learns, through time, which name goes with which image. That
is, the infant is a covariation detector. Based on this assumption, the model makes
a prediction about how infants might behave differentially in the bimodal habitua-
tion task depending on the auditory discrimination stimuli used. This prediction
arises from the general characteristics of this class of learning algorithms
(autoencoders). Such predictions form testable hypotheses of the theoretical as-
sumptions on which the model is based. To explain this prediction more fully,
however, it is necessary to review some of the formal properties of the type of net-
works implemented in this study. The backpropagation algorithm is a multilayer
extension of the delta rule, itself formally equivalent to the Rescorla–Wagner
model of classical conditioning (Elman et al., 1996; Rescorla & Wagner, 1972;
Rumelhart, McClelland, & the PDP Research Group, 1986). During training, ei-
ther in the language acquisition component or in the habituation component, the
network adjusts its weights to generate a compressed description of the input pat-
terns. The network processes the N-dimensional input (where N = 36 is the number
of input units) to minimize the error on the output units. This is a “greedy” learning
algorithm that alters weights to bring about the largest instantaneous error reduc-
tion. This results in a redescription of the input as a linear combination of k basis
vectors, where k is the number of hidden units (18 in this case). At any given time,
the input vectors are redescribed across the hidden units in such a way that the
maximum variance is captured by the k basis vectors. Under some conditions, this
corresponds to computing the k first principal components of the training set (e.g.,
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Baldi & Hornik, 1989; but see also Japkowicz, Hanson, & Gluck, 2000); however,
this process is constantly evolving as training proceeds. In other words, the
principal component description of the training set that is generated across the hid-
den units is also evolving with time.

On encountering the 240 label–object pairs, the network begins to adjust its
weights (which were initially set randomly between –0.5 and +0.5) to minimize
the error between output and input (autoencoding). Because the backpropagation
algorithm always takes the route of greatest error reduction when adjusting
weights, the network initially deals preferentially with the first principal compo-
nent of the input data.6 The second principal component tends to come next, and so
on, up to k principal components. Because backpropagation is a greedy algorithm,
however, it always makes weight changes that reduce error maximally, at that in-
stant in training. It may, for example, be more efficient to switch to learning about
the second principal component before all the variability associated with the first
principal component has been reduced; however, because we are interrupting this
process at different intervals (to habituate and test the network), we are probing
different, transitory states in the network’s principal component description of the
input matrix (the artificial 240-word language we have created). In effect, we are
testing networks with different internal models of their common language envi-
ronment. These transitory states are differentially sensitive to the two habituation
stimuli, [bIh] and [lIf]. Although the networks’ behavior is determined by the na-
ture of the input (language exposure and habituation stimuli), this behavior is not
readily predicted, because of the complex nature of the input. In the case of nonlin-
ear units of the sort we have employed here, a further important source of com-
plexity is that nonlinear networks with random initial weights are likely to find
different paths to the solution (Japkowicz et al., 2000); that is, to show different
transitory states. This fact contributes to the nonmonotonic progression seen in the
data in Table 1.

Havingbrieflydiscussedhownetworksextract structure fromtheirenvironment,
we are now in a position to consider what predictions flow from this approach. In
general, there will be pairs of auditory discrimination stimuli—let us call them
[A1]–[A2] and [B1]–[B2]—which, although equally distinct from one another in
terms of phonemic feature distance, give rise to differing habitua-
tion–dishabituation behaviors over time, because of the different relations that the
two pairs have with the statistical properties of the input language. To illustrate this,
suppose that in word-initial position, the phone [b] is more commonly encountered
(in the input to infants) than is the phone [k]. Further suppose that in word-final posi-
tion, these phones ([b] and [k]) are encountered equally often. The increased pres-
ence of [b] in the input, relative to [k], in initial position, will, all else remaining
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equal, result inpreferential learningabout initial-[b]over initial-[k].Therewillbeno
such preference in leaning about word-final position. As a result, discriminations of
the form [bXk]–[kXk] (where X stands for any phone) will result in greater release
from habituation than will discriminations of the form [kXb]–[kXk], even though
the two discriminations are equally distant in phonemic feature space. Furthermore,
thisdifferential response in thehabituation–dishabituation taskwill interactwith the
infant’s developing state of knowledge of the input language in a manner that is
rather hard to predict mathematically but can readily be modeled given a plausible
description of the input vocabulary. Finding such pairs may thus provide us with a
toehold for determining the similarity structure of infants’ internal code for phone-
mic information.

Making more specific predictions requires a more accurate characterization of
the phonological code used by infants. The language that the networks learned in
this study is made up of a random collection of CVCs; thus, although the phonemic
feature description of each of the three phonemes in each of the 240 labels bears
some relation to the structure of English (i.e., at the level of phonemic features),
the relations between given phonemes do not.7 This limits the generality of the
model, which can be expected to be reasonably accurate at depicting the relative
distinctiveness of pairs of CVCs (so that, e.g., [bIh] is more similar to [dIh] than
[lIf] is to [nim]) but to be less accurate about, say, the relative order of emergence
of knowledge about particular phonemes in actual English. For specific predic-
tions of this nature, a model that learns a more realistic vocabulary is required.

In summary, this research had three primary objectives: The first was to model
a pattern of behavior in which responses to a set of stimuli emerge from the interac-
tion of a single algorithm acting on a complex data set. Our model provides an ex-
ample of how a pattern of qualitative shift in behavior can be observed without
requiring a corresponding shift in the underlying processing (i.e., algorithm). A
second goal was to present a method for the modeling of habituation phenomena in
infants. We believe that conceptualizing habituation as a process of representation
construction within an associative network is very useful. The final goal was to il-
lustrate how long-term experience (language learning) and short-term experience
(within-task learning) can interact to produce what appear to be age-related devel-
opmental differences.

We have seen that a novelty preference in an infant habituation–dishabituation
paradigm may be modeled by a simple learning device, and further, that this pref-
erence is highly nonmonotonic over experience. We conclude that complex behav-
ior is seen in simple systems. Although this observation has been made before
(e.g., Elman et al., 1996; Thelen & Smith, 1993), we have shown that it may be ap-
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plied to infant habituation data in the rich field of speech-sound discrimination and
word learning in infancy.
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