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When it comes to selecting an architecture for modeling cognition, we have a
choice, We can start with a symbolic architecture, in which the putative constitu-
ents of abstract cognition (symbols) are taken as modeling primatives; or we may
adopt an alternative view, that symbolic behavior emerges from the operation of
a system of simple, sub-symbolic processing units, Connectionist models take
this latter tack, In these models, processing occurs through the propagation of
activation among a number of simple processing units, The knowledge that
governs processing is stored in the strengths of the connections among the units,
And learning occurs through the gradual adjustment of the strengths of these
connections, At fust glance it may seem that such mechanisms are far removed
from symbolic thought, Yet we will argue in this chapter that they may form the
basis of the acquisition of a number of cognitive abilities, and that they may help
us answer basic questions about the process of cognitive development. Several
different kinds of answers have been given to these questions, We will see how
the connectionist framework opens them anew and suggests what may be differ-
ent answers in many cases,

THE PHENOMENA

The field of cognitive development is replete with examples of dramatic changes
in children s thinking as they grow older, Here we give three examples: (a)
Failures of conservation and compensation, (b) Progressive differentiation of
knowledge about different kinds of things, (c) U-sbaped learning curves in lan-
guage acquisition,
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MCClELLAND AND JENKINS

Failures of Conservation and Compensation
Perhaps the best known phenomena in cognitive deveiopment are the dramatic
failures of conservation that Piagethas, reported in a wide range 

of differentdomains, One domain is the domain of liquid quantity, A child of 3 is shown two
glasses of water, The glasses are the same, and each contains the same amount of
water, and the child sees that the amount is the same, But when the contents of
one of the glasses is poured into a wider container, the child will say that there is
less liquid in the wider container,

It is typical to say that this answer that the young child gives reflects a failure
to recognize two things: (a) That quantity is conserved under the transformation
of pouring from one container to another; and (b) that greater width can compen- .
sate for less height, Many tasks are specifically designed to tap into the child'
ability to cope with these kinds of compensation relations between variables,

One such task developed by Inhelder and Piaget (1958), the so-called 

balance-scale lask, is illustrated in Fig, 3, 1, In this task , the child is shown a balance scalewith pegs at evenly spaced intervals to the left and right of a fulcrum, On one peg
on the left are several weights; on one peg on the right are 

several weights,The scale is immobilized, and the child is asked to judge which side will go
down, or whether they will balance, We will have occasion to examine 

perfor-mance in this task at length below; for now it suffices to note that young children
(up to about 6 or 7 in this case) 

typically respond as if the distance from thefulcrum was completely irrelevant. They will say the scale should balance if the
weight is the same on both sides, regardless of distance, Otherwise they say theside with the greater weight will go down, These children

, then , appear to missthe fact that lesser weight can be compensated for by greater distance. 'fYpically
by the age of II or so children have some appreciation for this trade off; the de-rails of the developmental progression are quite interesting, as we shall see below,

Progressive Differentiation of Ontological Categories
Other researehers, studying different domains, have noticed other kinds of devel-
opmental progressions, Keil (1979) studied children

s judgements about whetheryou could say things like "A rabbit is an hour long.
" He supposed such judg-ments tapped children s knowledge about different kinds of things, In these
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judgments, Keil was interested not in whether the child saw a sentence as true or
false, but in whether the child felt that one could make certain kinds of predica-
tions (e.g" that something is an hour long) when the something is a member of a
certain " ontological category" (e,g" living thing), Keil found that children were
much more permissive in their acceptance of statements than adults were, but
their permissiveness was not simply random, Rather" they would accept state-
ments that over-extendedpredicates to categories near the ones they typically
apply to, but would not extend them further, Thus some children will accept
predications like "The rock is asleep," but not "The rock is an hour long," It was
as though children' s knowledge of what predicates apply to particular categories
becomes progressively more and more differentiated, as iIlustrated in Fig, 3,
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FIG, 3, 1, Balance scale of the kind first used by Inhelder and Piagat
(19581. and later used extensively bV Siegler (1976; 1981; Siegler &
Klahr. 19821, Reprinted from Siegler, 1976. Fig, 1. with 

permission,

FIG, 3,2, Four different "predictabllity trees" lIIustreting the progres-
sive differentiation of concepts as a function of age, Terms In capltel.
at internal nodes In the trees represent predicates, and terms In lower
case at terminal nodes in the trees represent concepts that ere
spanned by all the predicates written on nodes that dominate the
terminal, A predicate spans a concept if the child reports that It is not
silly to applv either the predicate or its negation or both, to the concept,
Thus the first tree indicates that the child will accept "The girl Is (notl
alive," and "The chair is (not) tall" but will not accept "The chair Is
(not) alive," Parentheses Indicate uncertainty about the application of
a predicate, Redrawn from Keil, 1979, Appendix C, with permission,
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. U-Shaped Learning Curves in Language Development
Early on children often get certain kinds of linguistic constructions correct which
they later get wrong; only later do they recover their fonner correct perfonnance,
One example is the passive construction, applied to semantically biased mate-
rials, such as "The man was bitten by the dog," (See Bever, 1970, for a discus~sion of the development of the use of the passive construction.

) Early in develop-ment, children correctly interpret such sentences; they appear to be using
infonnation about what roles the different nouns typically play in the actiondescribed by the verb, since they tend to be correct only when 

the correctinterpretation assigns the nouns to their typical roles, At an older age, children
respond differently to such sentences, treating the fust noun-

phrase as the sub-ject; semantic constraints are over-ridden, and there is a tendency to interpret
The maD was bitten by the dog" as meaning "The man bit the dog," Finally,children interpret the sentence 

~y 

again, but fora different reason, It wouldappear that they DoW know how to understand passives in general, . since at thisstage they can also interpret semantically neutral and even reverse-biased sen-
tences (such as ..the dog was bitten by the man

~y,
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The ,main thrust of the remainder of this chapter is to argue that recent
developments in connectionist learning procedures suggest a dramatic alternative
to these kinds of views, The alternative is simply the hypothesis that these
diverse developmental phenomena all reflect the operation of a single basic
learning principle, operating in different tasks and different parts of the cognitive~~m, 

THE LEARNING PRINCIPLE

The principle can be stated in fairly abstract tenns as follows:

Adjust the parameters of the mind in proportion to the extent to which their adjust-
ment canproduc:e . reduction in the discrepancy between expected and observed
events,

THE QUESTIONS

This principle is not new, It might well be seen as capturing the residue of
Piaget' s accommodation process, in that accommodation involves an adjustment
of mental structures in response to discrepancies, (See Flavell, 1963, for a
discussion of Piaget' s theory,) It is also very similar to the principle that governs
learning in the Rescorla- Wagner model of classical conditioning (Rescorla &;
Wagner, 1972). What is new is that there exists a learning procedure for multi-
layer connectionist networks that implements this principle, Here, the parameters
of the mind are the connections among the. units in the network, and the pr0-
cedure is the back propagation procedure of Rumelltart, Hinton, and Williams
(1986),

The learning principle lies at the heart of a number of connectionist models
that learn how to do various different kinds of infonnation processing tasks, and
that have applications to phenomena in cognitive and/or language development,
Perhaps the simplest such model is the past-tense model of Rumelltart and
McClelland (1986), The development of that model predated the discovery of the
back propagation learning procedure, thereby forcing certain simplifications for
the sake of developing an illustration of the basic point that lawful behavior
might emerge from the application of a simple principle of learning to a connec-
tionist network, Subsequent models have used back propagation to overcome
some of these limitations, Included in this class are NBTtaIk (Sejnowski &;

Rosenberg, 1987) and a more recent model of word reading (Patterson, Seiden-
berg, &; McClelland, 1989), The present effort grew out of two observations of
similarities between the developmental courses seen in models embodying this
principle, and the courses of development seen in children: First, the course of
learning. in a recent model of concept learning by Rumelhart (1990) is similar to
aspects of the progressive differentiation of concepts reflected in Keil' s (1979)
studies of predictability, Second, the course of learning in a recent model 

The phenomena reviewed above raise basic questions about cognitive develop-
ment. Three of these questions are:

. Are these different phenomena simply IIDIelated facts about development in
different domains?

. Are there principles that all. of these phenomena exemplify?
there are principles, are they domain specific, or are they general prin-

ciples about development?

Different kinds of developmental theorists have answered such questions in
very different ways, To Piaget, each failure of 

compensation or conservationreflected a single common developmental stage; the phenomena were inbin-
sically related by the characteristics

of the stage, and these characteristics pr0-vided the basis for explanation,
Others have taken a very different approach, Keil (1979), followingChomsky s analogous argument for language, argued for 

domain specific prin-ciples of development. His view is that each cognitive domain has. its own laws
that provide constraints on what can be learned, These constraints limit thehypotheses that the child can entertain, thereby making it dramatically easier forthe child to acquire adult abilities in the face of the impoverished information that
is provided by experience with the world,
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sentence comprehension by McC1elJand, St. John, and 18raban (1989) 
milTOl'Saspects of the progno:ssion from reliance on semantic constraints, to reliance onword order, to, finally, reliance on complex syntactic patterning such as the

passive voice, We do not ' mean to claim that the models in question are fulJyadequate models of the developmental progression in either case; we only. mean
to claim that they seemed suggestive: They raised the possibility that part of the
explanation of these and other developmental phenomena might be found in the
operation of the learning principle as it adjusts connection strengths in a network
subjected to patterns arising in its environment.

The remainder of this chapter presents two experiments assessing the ap-plicability of this conjecture to another developmental phenomenon
, namely theacquisition of the ability to take both weight and distance into account in the

balance scale task described above, The task has been studied extensively by
Siegler and his colleagues (Siegler, 1976, 1981; Siegler & Klahr

, 1982), andquite a bit is known about it, We will first review 
the developmental findings,Then we will describe a connectionist model that captures these phenomena by

applying the learning principle stated above (McC1eUand, 1989), As a follow-up,we will describe a second model that captures effects of specific experience on
developmental change (Jenkins, 1986),

. Conflict, Here both weight and distance differ and are in conflict, in that the
weightis greater on one side but the distance from the fulcrum is greater on
the other, There are three types of conflict problems:
. Conflict-weight. In these cases, the side with the greater weight has the

greater torque (that is, the greater value of the product of weight times
distance),

. Conflict-distance, In these cases, the side with the greater distance has
the greater torque,

. Conflict-balance, Here the torques are the same on both sides,

DEVELOPMENT OF JUDGMENTS OF BALANCE

Siegler s analysis of children s performance assumed that children use role-
governed procedures, Four such procedures or rules as Siegler called them are
shown in Fig, 3,3, Each of these roles corresponds to a distinct pattern of
pedormance over the six problem types, For example, children using Rule I
should say the side with the greater weight will go down in weight problems and
in all three types of conflict problems, They should think the scale will balance
on balance problems and distance problems, In general, the mapping from the
roles to expected pedormance is extremely sttaightforward, The only point that
needs explication is the instruction muddle through when weight and distance
conflict in Rule 3, In practice it is assumed to mean "guess randomly among the
alternatives," so that 1/3 of the responses would be left-side-down; 1/3. right-
side-down, and 1/3 balance,

Siegler compared the pedormance of each child tested with each role, and
counted discrepancies from predicted performance based on the role, Children
who scored less than four discrepancies from a given role were scored as using
that role,

For our purposes, there are four basic fmdings that emerge from Siegler
analysis:

In an important monograph, Siegler (1981) studied children
s pedormancein thebalance scale task and three other tasks in which two cues had to be taken into

account for correct pedormance, In all cases, as in the balance scale task
, thecorrect procedure requires multiplication, For example, in the balance scale task

to determine which side will go down, one must multiply the amount of weight
on a given side of the beam times the distance of that weight from the fulcrom,
The side with the greater product will go down; when the products are the same,
the beam will balance,

Siegler studied children in several age groups, as welJ as young adults, Each
child was asked to judge 24 balance problems, In each case, the scale was
immobilized so that there was no feedback, The 24 problems could be divided
into four of each six types:

. Balance, In this class of problem, the weight is the same on both sides of
the scale and the weight is the same. distance from the fulcrom on bothsides.

. Weight. In these problems, the weights differ but distance from the fulcromis the same on both sides,

. Distance, Here the weight is the same on both sides, but the distance from
the fulcrom differs.

I, Lawful behavior, In general, performance of children over the age of 

extremely regular in the balance scale task, Overall about 90% of children tested
conform to one of the four roles,

2, Developmental progression. As children get older, they appear to progress
through the use of the different roles, The progression from Rule I to Rule 3 can
be thought of as a progression in which at farst the ' weight cue is ,relied on
exclusively, while at the end distance and weight are both taken into account, In
between (Rule 2), distance is, taken into account only if it does not conflict with
the weight cue, Children aged to 7 typically use Rule I, and colJege students
typically use rules 3 or 4, Many colJege students do not have explicit knowledge
of the torque principle, , Children younger than age tend not to be scorable

strictly in terms of one of the rules; however, they appear to show an increasing
tendency to behave in accordance with Rule 1,
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FIG. 3.3. Siegler's (1976, 1981) four "rules" for answering balanceacale problems. Each Rule Is In fact a full Procedure, rather than a
single rule. Reprinted with permission from Siegler 

11981), Fig. 1.
3. Generality. The same four rules appear to be 

adequate to characterizeperfonnance in all three of the domains that Siegler studied. Though the develop-
mental progression was not identical across domains, there was in aU cases a
trend from simpler to more complex rules with development.

4. Lack of correlation between domains. Even though children seem to prog-
ress through the same rules in different domains, they do not do so in lock-step;
the correlation across domains is low, particularly in tenns. 

of the higher-num-
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Rul.D
bered rules, so that children who are showing Rule 3 behavior in one task may be
showing Rule I behavior in another and Rule 4 in a third.

Rul.I

The model we describe here was developed by McClelland (1989). It is based on
earlier work by Jenkins (1986) relevant to other aspects of Siegler s data (Siegler,
1976; Siegler &: Klahr, 1982) to which we will turn our attention below.

The model is sketched in Fig. 3.4. Of course, the model is a drastic over-
simplification of the human mind and of the task; but as we shall see it allows us
to capture the essence of Siegler s flDdings, and to see them emerge from the
operation of the learning principle described above.

The model consists of a set of input units, to which balance problems can be
presented as patterns of inputs; a set of output units over which the answer to

MODEL OF THE BASIC PHENOMENA
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FIG. 3.4. The network used in the simulation of the development of
performance in the balance acale task.
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each problem can be represented; and a set of hidden units. between the input and
the output. Connections IUn from input utlits to hidden units and from hidden
units to output units,

The input units can be divided into two groups of 
10, One group is used torepresent infonnation about weight and the other is used to represent infonnation

about distance, In each case the input representation imposes as little sbucture as
possible on the input patterns, Each possible value of weight or distance from the
fulcrum is assigned a separate unit. The ordering of values from low to high is
not given in this representation; the network will have to learn this ordering, For
the convenience of the reader. the units are arranged in rows according to which
side of the beam they are from. and within each row they are arranged from left
to right in order of increasing weight or distance from the fulcrum; but this
ordering is unknown to the model before it is trained

, as we shall see,
Though the two dimensions are not inbinsically sbuctured 

for the model, thedesign of the network does impose a separate analysis of each 
dimension~ Thisseparation turns out to be critical; we will consider the implications of thisarchitectural simplification below, The separation is implemented as follows:

there are separate pairs of hidden units 
for each dimension, 1\vo hidden unitsreceive input from the weight input units and two receive input from the distance

input units,
Each of the four hidden units projects to each of the two output units, The left

output unit can be thought of as a "left side down" unit. and the right one as aright side down unit." Thus a correct network for the task would turn on the
output unit corresponding to the side with the greater torque, and would turn off
the unit for the bther side, For balance 

problems, we assume that the networkshould turn both units on half-way, Note that this coding of the output patterns
does tell the network that balance is between left side down and right side-down,

Processing, Balance problems of the kind studied by Siegler can be pr0-
cessed by the network by simply turning on (i,e" setting to 1) the input unitscorresponding to a particular problem and turning off (i,

e" setting to 0) all otherinput units, The input from the problem illustrated in Figure 3,7 is shown byusing black to indicate those input units whose activations are 1,
0, and white forthe units whose activations are 0,

The inputs are propagated forward to the hidden units, Each hidden unit
simply computes a net input:

In ~se equations. W IJ 
is the strength of the connection to hidden unit i from

input unitj, is the activation of input unitj, and bias, is the modifiable bias of
hidden unit i, This bias is equivalent to a weight to unit i from a special unit that
is always on,

Once activations of the hidden units are detennined, the activations of the
output units are detennined by the same procedure, That is. the net input to each
output unit is detennined based on the activations of the hidden units. the weights
from the hidden units to the output units, and the biases of the output units, Then
the activations of the output. units are detennined using the logistic function,

Responses, The activations of the output units are real numbers between 0
and I; to relate its perfonnance to the balance scale task. these real-valued
outputs must be translated into discrete responses, If the activation of one output
unit exceeded the activation of the other by , 333, the answer was taken to 

more active side down," Otherwise, the answer was assumed to be "both sides
equal, "

Learning. Before training begins. the strengths of these connections from
input to hidden units and from hidden to output units are initialized to random
values unifonnly disbibuted between +,5 and - ,5, In this state. inputs lead to
random patterns of activity over both the hidden and output units, 'lbe activations
of the output units fluctuate approximately randomly between about ,4 and ;6 for
different input patterns, The network comes to respond correctly only as a result
of training, Conceptually. training is thought of as occurring as a result of a series
of experiences in which the network is shown a balance problem as input;
computes activations of output patterns based on its existing connection weights;
and is then shown the correct answer, 'lbe signal that drives learning is the
difference between the obtained activation of each output unit and the correct or
target activation for that unit, The back-propagation procedure of Rumelhart,
Hinton. and Williams (1986) is then used to detennine how each connection
strength in the network should be adjusted to reduce these differences, Since the
procedure is quite well-known. suffice it to say that it exactly implements the
learning principle stated above, and restated here in network tenninology:

Adjust each weight in the networtc in proportiODto the extent to which its adjust-
ment can produce a nxluction in the discrepancy between the expected event 8Dd
the observed event, in the present context, --net

, = ~ 

+ bias

Here j ranges over the input units, Each hidden unit then sets its activation
according to the logistic function:

= I n"'

Here the "expected event" is the pattern of activation over the output units
that is computed by the network, the observed event is the pattern of activation
the environment indicates these units have. and the present context is the pattern
of activation over the input units, Note that the direction of change to a connec-
tion (positive or negative) is simply the direction than tends to reduce the dis-
crepancy between computed output and the correct or target output,
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Environment, The environment in which a network learns plays a very
strong role in detennining what it learns, and 

particularly the developmentalcourse of learning, The simulations reported here were based on the assumption
that the environment for learning about balance problems consists of experiences
that vary more frequently on the weight dimension than they do on the distance
dimension. Of course, we do not mean to 

suggest that all the learning thatchildren do that is relevant to their understanding of balance takes the fonD of
explicit balance problems of the kind 

OlD' network sees, Rather, our assumptionthat the experience on balance problems is dominated by problems in which there
is no variability in weight is meant as a proxy for the more general assumption
that children generally have more experiences with weight than with distance as a
factor in detennining the relative heaviness of something, I

The specific assumptions about the sequence ofleaming experiences were as
follows, The environment consisted of a list of training examples containing the
full set of 625 possible problems involving 25 combinations of possible weights
(I to 5 on the left crossed with 1 to 5 on the right) crossed with 25 

combinationsof possible distances (1 to 5 steps from the fulcrum on the left crossed with I to 5
steps from the fulcrum on the right), 1\vo 

COrpora were set up. Problems in whichthe distance from the fulcrum was the same on both sides were listed 5 times each
in one corpus, and 10 times each in the other corpus. Other problems were listed
only once in each corpus.

Training and testing regime. 
rour simulatiM . runs were cmied out, twowith each of the two corpora just described, In each run, training consisted of a

series of epochs, In each epoch, 100 patterns were chosen randomly from the full
list of patterns in the corpus, In each epoch

, weight increments were accumu1atedover the 100 training trials and then added into the weights at the end of the
epoch, according to the momentum method described in Rumelhan, Hinton, and
Williams (1986 p~ 330); parameters were 

TI = 0,075, 

= ,

9),After weight updating at the end of each epoch, the network was given a 24
item test, containing four problems of each of the six types described above,
taken from an experiment of Siegler s, (A few of the examples had to be modi-fied since Siegler s experiment had used up to six pegs,

Environment Assumption, The model assumes that the environment is
biased, so that one dimension- . this case weight-is more frequently avail-
able as a basis for predicting outcome than the other,

Architecture Assumption, The model assumes that the weight and distance
dimensions are analyzed separately, beforeinfonnation about the two dimensions
is combined,

Both of these assumptions are crucial to the success of the model. In 
unbiased environment, both cues would be learned equally rapidly, Effects of
combining the cues from the start as prescribed by the architecture assumption
are more complex, but suffice it to say for now that the apparent stagelike
character of perfonnance is much less clear unless this assumption, is adopted,

An important topic for further research will be to examine what variants of
these assumptions might still allow the model to be successful. For example,
regarding the environment, differences in salience (i.e" strength of input activa-
tions) and structuredness of the dimensions might also produce similar results.

The issue of structuredness of the dimensions is a key point that needs to be
considered as it relates to the present simulation, For both dimensions, the input
representations encode different weights and distances from the fulcrum using
distinct units, This means that different values are distinguishable by the model,
but they are not structured for it; for example the input itself provides no indica-
tion that a distance or weight of 3 is between 2 and 4, The network must learn to
represent the weights and distances in structured ways in order to solve the
balance problem, We will see that it does this later.

Results
In general perfonnance of the model confooned to one of thd four rules described
by Siegler, Over the fOlD' runs, the model fit the criteria of one of Siegler s four
roles on 85% of the occasions, not counting an initial pre-Rule 1 period (In
Siegler, 1981, the confonnity figure is about 90%), Of course, the model was not
consulting these rules or following the step-by-step procedures indicated in them;
rather its behavior was simply scorable by Siegler s criteria as consistent with the
succession of rules, Excluding the initial period, failures to fit the nates were of
three types: Cases in which a nate fit except for a position bias that gave difficulty
on balance problems, cases in which perfonnance was borderline between Rules
I and II, and combinations of these two problems, (Siegler (personal communica-
tion) does find some borderline cases between Rule land Rule 2, but the position
bias cases are not typical of children s perfonnance.

Overall Developmental Trends. Epoch by epoch perfonnance in each of the
fOlD'runs is shown in Figs, 3,5 and 3,6, One generally observes the expected
developmental progression, Each simulation nm is slightly different, due to
differences in the random starting weights and the sequence of actual training

A Comment on the Simulation Model
The model described above obviously simplifies the task that the learner faces and
structures it for him to some degree. In particular, it embodies two principal as-
sumptions which are crucial to the successful simulations we will consider below:

IAn alternative assumption which might account for the developmearal data just 
u well is the888WDption that the weight dimension is IR-SIntcIuJed before the child comes to consider balanceproblems, while the distance dimension is IlOl, The assumption that distance varies less frequendy

titan weight but that neither dimeasion is initially structured allows us to 
obseJVe the stnJct1aingpt'O(:CSS for both dimensioas,
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FIG. 3,5. Epoch by epoch performance of the simulation model in the
two runs with a 5 to 1 bias favoring problems in which distance did not
vary. Performance is scored by Rule. Cases marked by . missed a rule
due to position bias, Rule 0 corresponds to always saying "balance,
and occurs at the beginning of training, Rule 1.5 corresponds to perfor-
mance on the borderline between Rules 1 and 2,
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experiences, but there are clear common trends. Over the rust 10 epochs or so,
the output of the model was close to . 

on all test patterns; by our scoring criteria,
all of these outputs count as "balance" responses, but of course they really
represent a stage in which neither weight nor distance governs perfonnance. The
next few epochs represent a transition to Rule I, in that in this phase the model is
showing some tendency to activate the output unit on the side with the greater
weight, but this tendency is variable across patterns and the discrepancy between N
the activations of the output units is not reliably greater than .33 when theweights differ. 

After this brief transition, performance of the model has generally reached the
point where it was responding consistently to the weight cue while systematically
ignoring the distance dimension. This pattern continued for several more epochs.
There was a brief transitional period, in which the model behave inconsistently
on the distance problems crocial to distinguishing between Rule 1 and Rule
2 behavior. After several epochs in this phase, use of the distance cue reached
the point where performance on all types of conflict problems became variable.
The model generally continued in this phase indefinitely, sometimes reaching the
point where its perfonnance was generally scorable as fitting Rule 4 and some.
times not.

The variability in the model' s performance from epoch to epoch is actually
quite consistent with test-retest data reported in Siegler (1981), Rule 2 behavior
is highly unstable, and there is some instability of behavior in other roles as well.

Performance in each phase. Siegler s criteria for conformity to his roles
allow for some deviations from perfect conformity; in fact only 83% of test

problems must be scorable as consistent with the role. Given this, it is interesting
to see whether the discrepancies from the roles that are exhibited by the model
are consistent with human subject's performance. In general, they seem to be
quite consistent, as Fig. 3.7 indicates. Each panel shows percent correct perfor-
mance by the model averaged over the tests on which the model scored in
accordance with one of the four roles. Also shown are data from two groups of
human subjects as well as the pattern of performance that would be expected
from a perfect role user.

For Rule I, the model differs very little from humans. For Rule 2, again the
correspondence to human data is very close. Both the model and the humans
show some slight tendency to get conflict-distanCe problems correct, and to
occasionally miss distance and balance problems. For both Rule 1 and Rule 2,
the tendency to miss balance problems is slightly greater in the model than in the
children s data. For Rule 3, the model exaggerates a tendency seen in the human
data to be correct on conflict-weight problems. more often than on 

conflict-

distance problems, The major discrepancy from the data is that the model is too ac.
curate on conflict-balance problems. For Rule 4, the model again exaggerates a
tendency seen in the human data to have residual difficulties with conflict problems.
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FIG. 3,8. Epoch by epoch performance of the simulation model in the
two runs with a 10 to 1 bias favoring problems in which distance did
not vary. Performance i8 scored by Rule, as in FIg. 3,

With the exception of the cotiflict-ba/ance problems in Rule 3, the human dataseem to fall about half-way between the model and perfect coJTespondence to the
roles. It is tempting to speculate that some human subjects-

particularly Rule 4subjects-may in fact use explicit roles like the torque role some of the time. It
is, indeed, easy for the adult subjects who contribute to the Rule 4 results to
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RUlE 1 RULE 3

Y'L
IIAL WE! IllS CoW c-o c-a

-""

IIAL WEI IllS CoW c-o c-a

-""

RULE 2 RULE 4

IIAL WE! IllS CoW c-o c-a IIAL WE! IllS CoW c-o c-a

....-""

FIG. 3.7, Children s performance by problem type on the balance

scale task, together with the performance of the simulation model and
expected performance based on each rule. The heavy line with dia-
monds indicates children s performance. The model's performance is
given by the light line with )('s, whereas performance predicted from
the rule is given by the light line with squares. For each child and each
test of the simulation, performance was precategorized according to
the best fitting rule. Then, percent correct responses by problem type
were calculated averaging over children or simulation testa falling into
each rule.

follow the torque role if instructed specifically in this role. Howevert it is evident
that the subjects who fall under the Rule 4 scoring criteria do not in fact adhere
exactly to the role. Perhaps this group includes some individuals perfonning on
the basis of implicit knowledge of the trade-off of weight and distance as well as
some who explicitly use the torque role, and perhaps some individuals use a
mixture of the two strategies.

Further co"espondences between the model and child development. So far
we have seen that the balance scale model captUreS the pattern of development
seen in the studies of Siegler (1976, 1981). There are two further aspects of the
developmental data which arc consistent with the gradual buildup of strength on
the distance dimension that we see in the model:

I. Wilkening and Anderson (in press) present subjects with one side of a
balance beam, and allow them to adjust the weight on the other side at a fixed
distance from the fulcrom to make the scale balance. Over the age range of 9 to
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20, in which children are generally progressing from late Rule I or Rule 2 toRule 3 or Rule 4 according to Siegler s methods, they find an increasing sen-
sitivity to the distance cue, Unfortunately it is difficult to be sure whether this
reflects different numbers of subjects relying on the distance cue, or (as we see in
the model) differences in degree of reliance among those who show some sen-
sitivity to the distance cue,

2, For children who exhibit Rule 3 on Siegler s 24-item test, careful assess-ment with a larger number of conflict problems indicates the use of cue compen-
Sjltion strategies, rather than random guessing (Fenetti, Butterfield, Cabn

, &

Kerkman, 1985), Thus children are not simply totally confused about conflict
problems during this stage but have some sensitivity of relative magnitudes of
cues, as does the model. The exact degree of correspondence of the model'

perfonnance and human perfonnance on these larger tests remains to be ex-
plored,

The mechanism/or developmental change, Given the generally close corre-spondence between model and data, it is important to understand just how the
model perfOrms, and how its perfonnance changes, To do this, it is helpful to
examine the connections in the network at several different points in the learning
process, Figure 3,8 displays the connections from the ron that produced the
results shown in the top panel of Fig, 3,6, at 4 different points dwing learning: At
epoch 0, before any learning; at epoch 20, early in the Rule 1 phase; at epoch 40,at the end of the Rule 1 phase; and at epoch 100, when the simulation wastenninated, Each of the four large, rectangles in each panel shows the weights
coming into and out of one of the four hidden units, The two on the left receive
input from the weight dimension, and the two on the right receive input from the
distance dimension,

In the first panel, before learning begins, all the connection strengths havesmall random values, In this situation, the output of the 
hidden units is notsystematically related to magnitudes of the weights or distances, and is therefore

of no use in predicting the correct output, At this point, the.
hidden units are notencoding either relative weight or relative distance, and are therefore providing

no infonnation that would be useful for predicting whether the left or right side
should go down,

The first phase of learning consists of the gradual organization of the connec-
tions that process the amount of weight on each side of the balance scale, Recall
that the network receives problems in which the distance cue varies much less
frequently than problems in which the weight cue varies, Learning to rely on the
weight cue proceeds more quickly than learning to rely on the distance cue as a
simple result of this fact, The rate of learning with respect to

' each type of cue isrelatively gradual at first, but then speeds up, for reasons that we will explore
below, The relatively rapid transition from virtually unresponsive output to fairly
strong reliance on the weight cue represents the brief transition to Rule 1 respond-
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FIG, 3,8, Connection strengths into (I-+H)lnd out of (H-+O) e8Ch of
the hidden units. It each of four different points during training, Ac-
tivltions of input, hidden. end output units ere also shown. for e con-
flict balance problem. in which there ere 2 weights on peg 4 on the left
end 4 weights on peg 2 on the right, Mlgnitude of each connection is
given by the size of the blackened erel, Sign is indiC8t8d by whether
the blackened eree extends ebove or below the horlzontsl baseline,
Note thlt ectivltlons ere III positive, end renge from 0 to 1, The con-

nection strengths range between +6lnd -6. See text for further expla-
nation,

ing, The result of this phase, in the second panel of the figure, is a set of
connections that allow the hidden units on the left to reflect the relative amount of
weight on the left vs, the right side of the balance scale, The leftmost hidden unit is
most strongly excited by large weights on the left and small weights on the right,
and most strongly inhibited by large weights on the right and small weights on the
left~ The activation of this unit, then, ranges from near 0 to near 1 as the relative

magnitude of weight ranges from much more on the right to much more on the left,
Conespondingly, this unit has an excitatory connection to the left-side-down
output unit, and an inhibitory connection to the right-side-eJown output 

unit, The

second hidden unit mirrors these relationships in reverse, At this point, then, the
hidden units can be said to have learned to represent something they were not
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MCCLELLAND AND JENKINS

representing before, namely the relative magnitude of the inputs, Note that this
infonnation is not explicidy contained in the input, which simply.distinguishes but
does not order the different possible values of weight on the two sides of the
balance scale,

At this point, the connection strengths in the distance part of the network
remain virtually unchanged; thus, at the hidden unit level, the network has not
yet learned to encode the distance dimension,

Over the next 20 epochs, connections get much stronger on the weight dimen-
sion, and w'e begin to see some organization of the distance dimension, While
this is going on, the overt behavior of the network remains Rule I behavior, The
network is getting ready for the relatively rapid transition to Rule 2 and then to
Rule 3 which occurs over the next several epochs of training (as shown in the top
panel of Fig, 3,6), but at epoch 40, the end of the Rule 1 phase, the distance
connections are still not quite strong enough that they can yet push activations of
the output units out of the balance range, With fmther learning, the distance cue
becomes stronger and stronger, this fust causes the distance cue to govern perfor-
mance when the weights are in balance, giving rise to Rule 2 behavior. Further
strengthening causes the distance cue to win out in some conflict problems,giving rise to behavior consistent with Rules 3 and 4, At epoch 100 of this
particular run, the weight dimension ~ntains a slight ascendancy, so that with
the particular confl;ct-baltmce problem illustrated, the model activates the left-
side down unit, corresponding. to the side with the greater weight, more than it
activates the right-side down unit,

A couple of aspects of the developmental progression deserve comment. As
Fig, 3,9 illustrates, the connection strengths are largely insensitive to differences
early on, then go through a fairly rapid transition in sensitivity and then level off
again, The acceleration seen in learning is a result of an inherent characteristic of
the gradient descent learning procedure coupled with the arehitecture of the
network, The procedure adjusts each connection in proportion to the magnitude
of the effect that adjusting it will have on the discrepancy between correct and
actual output, But the effect of a given connection depends on the strengths of
other connections, Consider the connection coming into a hidden unit from one
of the input units, An adjustment of the strength of this input connection will
have a small effect on the output if the connections from the hidden unit to the
output units are weak, In this case, the input connection will only receive a small
adjuSbnent, If however, the connections from the hidden units to the output units
are strong, an adjustment of the strength of the input connection will have a much
larger effect; consequendy the learning procedure makes a much larger adjust-
ment in this case, A slighdy different story applies to the connections from the
hidden units to the output units, When the connections from the input to the
hidden units are weak and random, the activations of the hidden units are only
weakly related to the correct output, Under these cm:umstances, the adjustments

Hidden to Output
CII

...

CII

Epoch

Input to Hidden

CII

CII
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FIG, 3,9, Relative magnitude of connection strengths encoding
weight and distance, al a function of training, Magnitude il given by
the range of connection strengthl(most positiveminul most negative)
coming into one weight or distance hidden unit (lower panel) and
coming out of weight or distance unit (upper panel),
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MCCLELLAND AND JENKINS

made to the output weights tend to cancel each other out, and progress oflearning is very slow. It is only after ttre input weights 
become organized thatlearning can proceed efficiently on the output side of the hidden units.

The story we are telling would be a very sad one
, were it not for the fact that it isnot all or none. It is not that there is no learning at all at first. In that case, there

would be no gradual change to the point where learning 
becomes more rapid.Rather, it is simply that initially learning is simply 

very gradual; so gradual that itdoes not show up in overt behavior. Gradually though this initially slow learning
accelerates; producing an increasing readiness to learn.

The differential readiness to learn allows the model to account for the results
of an experiment described by Siegler (1976), on the effects of training for young
vs. old Rule I children. Siegler showed 5- and 8-

year-old Rule I children a seriesof distance problems or a series of conflict problems. The children were allowed
to try to predict which side would go down

, and were then shown what actuallyhappens. The results were striking. Of the children who saw the outcomes for
distance problems , both age groups were very likely to exhibit Rule 2 behavior
on a post-test. However, of the children who saw the 

outcomes for conflicttraining, the younger children either continued to behave in 
accordance withRule I or became inconsistent in their responding. The older children, on the

other hand, benefitted from the conflict training. On a post test, the older chil-
dren were very likely to exhibit Rule 2 or Rule 3 behavior. In further experiments
on early Rule I children, Siegler reported that these children do not represent the
distance correctly: When asked to reproduce a balance beam configuration

, theycould usually get the number of weights correct, but could rarely place them on
the correct pegs. Younger Rule I children who were then trained to represent the
distance correctly were able to learn from experience with conflict problems like
the older Rule I children.

3. NATURE, NURTURE, AND CONNECTIONS &S. ,

weakly encoded. While it is still too weak to actually cause the output to be
strongly enough affected by the distance cue to actually affect performance, it is
strong enough for a small amount of experience to cause a further increase in
strength to the point where the distance cue is strong enough to influence perfor-
mance.

Feedback Simulation Trials

SIMULATIONS OF FEEDBACK EXPERIMENTS

This general pattern of results fits closely with what we would expect based on
what we have already learned about the model. Particularly interesting are the
effects of feedback on conflict trails on early and late Rule I perfonnance. The
model was shown a set of conflict trials with feedback

, using the weights ob-tainedearly in the Rule I phase (epoch 20) and later (epoch 40). In thefonnercase
perfonnance gradually reverted to random. In the latter case, it shifts after only
one exposure to the set of conflict trials to the rule 2 level. The reason for the
deterioration in the first case is simply that early in Rule I, the weights in the
network do not encode distance infonnation at all. As a result the conflict trials
appear to involve a pattern of very inconsistent feedback concerning the correct
predictions to make based on the weights alone. Later in Rule I

, the distance cue is

The general approach taken here can be extended to cover the full range of training
experiments carried out by Siegler (1976). Simulations more closely matching the
design of these experiments were carried out by the second author. For these
simulations, a similar architecture was used. One major difference was the
addition of 2 more output units. These additional output units received input from
the hidden units on the distance dimension. In general, these additional output
units, from now on to be referred to asdistance encoding units, were not involved
in the simulations except where outlined below.

The purpose of these simulations was to model the training experiences from
Siegler s second and third experiments. The issue at this point was whether the
model could simulate the effects of training with distance problems versus training
with conflict problems.

To simulate the stability of the . system s knowledge about the weight dimen-
sion, the learning mechanism s proportion of change with respect to error for the
connections from the weight units and the weight internal units and from the
weight internal units to the balance scale output units (their learning rates) were,
respectively, .00 and ,025, while the proportion of change with respect to error
for all of. the distance dimension connections was .05.

To begin the simulation of Siegler s second experiment, the model was ini-
tialized by training only the connections between the weight input units and the
weight-hidden units, and between the weight-hidden units and the balance scale
output units. This training was performed by presenting the model with 50 epochs
of input and feedback for each possible configuration of weight and balance
problems with no distance information provided to the model. On the balance
scale prediction task, this system produced perfect Rule I behavior. From this base
perfonnance level, the model received two types of training in separate sessions.
In one session, the model received feedback training similar to the distance
feedback training in Siegler s second experiment. That is, the model was trained
with 16 different patterns and their associated correct responses; 12 patterns with
equal weight input to the two sides of the weight input units and different distance
inputs to the two sides of the distance input units (Distance problems), 2 patterns
with equal weight and distance inputs (Balance problems), and 2 patterns with
different weight inputs to the two sides of the weight input units and equal distance
input to the two sides of the distance input units (Weight problems).

",. ", . "......... ~.'. '"""'. .",,~~~,. .--..
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MCCLELLAND AND JENKINS 3. NATURE, NURTURE, AND CONNECTIONS

In the second session, after reinitialization of the system to the base perfor-
mance level, the model received feedback training similar to the conflict training
in Siegler s second experiment. That is, the model was trained with 16 different
patterns and their associated correct responses; 12 patterns with greater weight
input to one side of the weight input units and greater distance input to one side
of the distance input units (Conflict problems), and 2 patterns with equal weight
and distance inputs (Balance problems), and 2 patterns with different weight
inputs to the two sides of the weight input units and equal distance input to the
two sides of the distance input units (Weight problems).

In both of these sessions, the model received 40 epochs (640 trials) of train-
ing. A measure of the effectiveness of the training trials was plotted over the
course of the forty training epochs. 1be effectiveness measure, called the sum of
squares error tenn (SSERROR), measures the difference between the activations
of the prediction responses of the model over the training set of patterns and the
activations of correct responses for the set of patterns, Therefore, a large error
tenn represents an inability of the model to produce correct predictions, while a
small tenD represents a close match between the predictions of the model and the
correct responses.

Figures 3, 108 and 3. lOb show SSERROR plotted over training epochs dming
distance training and conflict training, respectively. In Fig. 3. 108, we can seethat distance training causes the model' s predictive performance over the training
problem set to improve dramatically. In contrast, Fig, 3, IOb shows that conflict
training did not increase the model' s predictive performance over the training
problem set. These graphs indicate that, in the 40 epoch time frame, the model
learned from the distance training but did not learn from the conflict training,

A more dramatic demonstration of this difference in learning was exhibited in
the model's perfonnance on the prediction task following the feedback training.
Like many of Siegler s five year old subjects, the modelleamed to perfonn as a
rule 2 user after distance training; in addition to getting balance, weight and
conflict-weight problems correct, the model was able to correctly predict dis-
tance problems as well. After conflict training, however, the model did not learn
to perfonn at all different from rule 1 behavior, Hence, the model closely simu-
lated the behavior of the S-year-olds.

The next step in the evaluation of the model was to give distance encoding
training to the base perfonnance model. 1be model's encoding training was not
the same as the training that Siegler presented to his subjects; instead, thistraining was only meant to get the model to categorize the distance input into one
of the three relative values. Thus, this training involved modification of only the
connections between the distance input units, the hidden units of the distance
dimension , and the distance encoding units at the output level. This encoding
training set included everY configuration of distance as input to the network (36
patterns) paired with the corresponding relative distance value (more distance
left, more distance right, or equal distance) as the target feedback for the distance
encoding units.
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FIG. 3.10. Network error over training for (e) di8t8nce training, (b)
conflict training, end (e) conflict training after encoding training.

For example, the model was presented at the input level with the activation
pattern for three right and two left, and trained to produce the pattern of activa-
tion for more distance right across the distance encoding units. The model
received 25 epochs of training with this training corpus. This training allowed the
distance hidden units to discriminate distance input patterns as greater distance
left, greater distance right or equal distance, No training occurred between any of
the other units of the model during the distance encoding training phase, follow-
ing this encoding training, the model was again tested on the prediction task. The
model, like Siegler s subjects, did not exhibit a change in behavior. Finally,
the model was provided with the saine conflict training as had been provided in
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the earlier conflict training session. In contrast to Fig. 3. IOb, the plot of theeffectiveness of conflict training after encoding training (Fig. 3. 1 Oc) shows thatconflict training dramatically increases the model' s predictive perfonnance over
the training problem set. This graph indicates that the model was able to learn
from the conflict training after encoding training. rollowing this training, the
model was again tested on the prediction task.

This time, the model was able to correctly use the distance infonnation to
predict distance problems. It also learned, like the children, not to rely strictly on
the weight cues to predict the conflict problems and thus its perfonnance went
down on the conflict weight problems (from 100% correct to 75% correct) and up
on the conflict distance and conflict balance problems (both from 0% correct to
50% correct).

In essen~, the model learned to perfonn as a role 3 user after the conflict
training following the encoding training. Hence, the model simulated the learn-
ing abilities of many of the 5- and 8-year-olds on the conflict training task after
receiving distance encoding training.

1b understand how this model works, it is important to understand the internal
structure that develops during training. So, before distance training, after dis-
tance training, after conflict training, and after encoding training followed by
conflict training, the model was presented with 

IS different distance configura-
tions (patterns of activation) across the distance input units. There were five
configurations each; of more distance right, more distance left, and equal dis-
tance (balance). After each presentation of a distance configuration, the average
activation of the two sets of units of the distance internal group were measured
and plotted against each other. The two sets of units were chosen by examining
the activation values and attempting to detennine which, if any, 

of the unitstended to have correlated activation values. Units with correlated activationvalues were considered members of a common set for the purposes of this
analysis. Units could not be chosen a priori due to fact that the learning mecha-
nism recruits units to code similar functions only during the course of training.

To display these activations in response to different inputs, two-dimensional
graphs were constructed with each axis specifying the average activation level of
one set of units. fur each graph, five points are plotted which mark the activa-tions of the two sets of internal units when . the five configurations of more
distance right were presented-'-these are marked with an ~ . Likewise, each ofthe five points for the internal activations for the configurations of more distance
left and balanced distance are marked with an ' L' and a ' , respectively. Uponexamining these activation values before training, it was discovered that these
$tts of input patterns were not discriminated in any way in the distance internal
group. Because the connection strengths of the connections to these units were
not trained, every input pattern produced almost the same activation pattern at
the internal level and thus all of the points ended up on top of each other. Thus,
this graph is not shown. However, when this same procedure was perfonned after.

3. NATURE, NUR1\JRE, AND CONNECTIONS

distance training, the activations shown in Fig. 3. 11a were produced. Here, we

see that the network has learned to internally represent similar distance input
similarly (all of the R,s, L's, and B's are clustered together), and, more impor-
tantly, to represent different distance inputs differently (the R, L, and B clusters
are separated away from each other). What is claimed, then, is that during
training, the model restructured the internal representations for each problem
association in such a way that the concept of relative distance-more distance

left, right, and equal distance-emerged from the representations.
This analysis was also performed after conflict training and the results are

shown in Fig. 3. 11b. In this case, the training did not allow for the formation of
the relative distance concept within 40 epOchs of training. The in.emaI represen-
tations for the dift'erent distance configurations did not differentiate into the 
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FIG. 3.11, Activations of the units of the Internal distance group for
(a) distance training, (b) conflict training, and (c) conflict training after
encoding training.
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MCCLELlAND AND JENKINS

clusters of their distance relative relationships, Without this abstract relationship,
the model was unable to generalize to new configurations and thus, in the
prediction task, did not change its behavior, However, when this analysis was
perfonned after encoding training, (which produced the relative distance repre-
sentations at the intemallevel as shown in Fig. 3, llc), the model was able to
learn to use relative distance cues on the prediction task,

Shortcomings. of the Model
"Thken together, the two versions of the simple network model of the balance
beam task that we have described above exhibit a striking correspondence with
many aspects of the developmental facts, These correspondences have, we think,
important implications for theories of cognitive development, Before we turn to
these correspondences" we fll'St consider a few shortcomings of the model, Three
failures of the first version to fit aspects of Siegler s data must be acknowledged:
First, the model can never actually mastei' Rule 4, though some subjects clearly
do, Second, it' s behavior during Rule 3 is slightly different from humans (though
it should be noted that the "human" Rule 3 pattern is actually a mixture of
different strategies according to Klahr and Siegler, 1978), Third, it can exhibit
position biases that are uncharacteristic of humans, who seem (at least, from the
age of on) to "know" that there is no reason to prefer left over right,

There are other shortcomings at well, Perhaps the most serious is in the input
representations, which use distinct units to represent different amounts of weight
and distance, This representation was chosen because it does' not inherently
encode the structure of each dimension, thereby forcing the network to discover
the ordering of each dimension. But it has the drawback that it prevents the
network from extrapolating or even interpolating beyond the range of the discrete
values that it has experienced,

Finally, Siegler has reported protocol data that indicates that subjects are often
able to describe what they are doing verbally in ways that correspond fairly well
to their actual perfonnance, It is not true that all subject's verbalizations correctly
characterize the Rule they are using, but it is true, for example, that subjects who
are sensitive to the distance cue mention that they are using this cue and those
who are not tend not to mention it, The model is of course completely mute,

What are we to make of these shortcomings in light of the overall success of
the model? Obviously, we cannot take it as the fmal word on development of
ability to perfonn the balance scale task, We would suggest that the model'
shortcomings may lie in two places: First, in details of the encoding of inputs and
of the network architecture; and second, in the fact that the model only deals with
acquisition of implicit knowledge,

Regarding the first point, it would be reasonable to allow the input to encode
similarity on each dimension by using input representations in which each unit
responded to a range of similar values so that neighboring weights and distances
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produced overlapping input representations; fwthennore, the inputs could well
make use of a relative code of magnitude to keep values within a fixed range.
This would probably overcome the interpolation and extrapolation problems (we
have no stand on whether such codings are learned or pre-wired),

These kinds of fixes would not allow the model to truly master Rule 4 and
perhaps rightly so, since it seems likely that Rule 4 (unlike the other roles) can
only be adhered to strictly as an explicit (arithmetic) role, Indeed, it must be
acknowledged that there isa conscious, verbally accessible component to the
problem solving activity that children and adults engage in when they confront a
problem like the balance scale problem, The model does not address this activity
itself, However, it is tempting to suggest that the model captures the gradual
acquisition mechanisms which establish the possible contents of these conscious
processes. One can view the model as making available representations of differ-
ing salience as a function of experience; these representations might serve as the
raw material used by the more explicit reasoning processes that appear to playa
role, This is of course sheer speculation at this point, It will be an important part
of the , business of the ongoing connectionist exploration of cOgnitive develop-
ment to make these speculations explicit and testable,

IMPLICATIONS OF THE BALANCE $IMULATIONS

The model captures several of the more intriguing aspects of cognitive develop-
ment, It captures its stage-like character, while at the same time exhibiting an
underlying continuity which accounts for gradual change in readiness to move on
to the next stage, It captures that fact that behavior can often seem very much to
be under the conb'ol of very simple and narrow roles (e, g" Rule 1), yet exhibit
symptoms of gradedness and continuity when tested in different ways, It captures
the fact that development, in a large number of different domains, progresses
from an initial over-focussing on the most salient dimension of a task or prob-
lem-to the point where other dimensions are not even encoded-followed by a

sequence of further steps in which the reliance on the initially unattended dimen-
sion gradually increases,

As mentioned previously, the model can be seen as implementing the accom-
modation process that lies at the heart of Piaget'stheory of developmental
change, Accommodation essentially amounts to adjusting mental structures to
reduce the discrepancy between observed events and expectations derived from
the existing mental structures, According to Flavell (1963), Piaget stressed the
continuity of the accommodation process, in spite of the overtly stage-like char-
acter of development, though he never gave a particularly clear account of how
stages arise from continuous learning (see Flavell, 1963, pp, 244-249 for a
description of one attempt), 1be model provides such a description: it shows
clearly how a continuous accommodation.like process can lead to a stage-like

progression in development,
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Changes in representation and. attention through the course of develop-
ment. When a balanCe scale problem is presented to the model, it sees it 
different ways, depending on its developmental state. At all ti~, infonnation is
in some sense present in the input for detennining what is the correct response.
However, at rust this information produces no real impression; weak, I'iU1domactivations occur at the hidden level and these make weak, random impressions
at the output level. At the beginning of the Rule I behavioral phase, the model
has learned to represent relative amount of weight. The pattern ofactivation over
the hidden units captures relative weight, since one unit will be more activated if
there is more weight to the right, and the other will be more activated if there is
more weight to the left; both units take on intennediate activations when the
weights balanCe. At this point, we can seethe model as encoding weight, but not
distance infonnation. Indeed, as we have seen at this point the network: Could be
said to be ignoring the distance cue; it makes little impact on activation, and
learning about distance is very slow at this point. At the end of the Rule I phase,
in spite of its lack of impact on overt behavior, the network: has learned to
represent relative distances; at this point it is extremely sensitive to feedback
about distance; it is ready to slip over the fairly sharp boundary in perfonnance
between Rule 1 and Rule 2. Thus, we can see the Rule 1 stage as one in which
overt behavior fails to mirror a gndual developmental progression that carries the
model from extreme uoreadiness to learn about distance at the beginning of this
phase to a high degree of readiness at the end.

This developmental progression seems to resolve the apparent paradoxicalrelation between observed stage-like behavioral development and assumed con-
.tinuity of learning. To us this is the most impressive achievement of the model; it
provides a simple, explicit alternative to maturational accounts of stage-like
progression in development.

It must be noted, however, that the success of the model depends crocially on
its structure. In fact the results are less compelling if either of the following
changes are made: (a) if balance is treated as a separate category, rather than
being treated as the intennediate case between left-side-down and right-side-
down; (b) if the connections from input to hidden units are not resbicted as they
are here so that weight is processed separately from distance before the two arecombined. '

More generally, it is becoming clear that an::hitectural resbictions on connec-
tionist networks are crocial if they are to discover the regul~ties we humans
discover from a limited ninge of experiences (Denker et at, 1987; Rumelhart, in
preparation). This observation underscores that fact that the learning principle, in
itself, is not the only principle that needs to be taken into account. There proba-
bly are additional principles that are exploited by the brain to facilitate learning
and generalization. Just what these additional principles are and the extent to
which they are domain specific remains to be understood in more detail.
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Extending this observation a step further, we can see the connectionist frame.
work as a new paradigm in which to explore basic questions about the relations of
nature and nurture. We may find that successful simulation of developmental
processes depends on building in domain specific constraints in considerable
detail; if so this would support a more nativist view of the basis of domain-
specific skills. On the other hand, it may bun out that a few other general
principles in addition to the learning principle are sufficient to allow us to capture
a wide range of developmental phenomena. In this case we would be led toward
a much more experience-based description of development. In either case, it
seems very likely that connectionist models will help us take a new look at these
important basic questions.

CONCLUSIONS

The exploration of connectionist models of human cognition and development is
still at an early stage. Yet already these models have begun to capture a new way
of thinking about proce$sing, about learning and, we hope the present chapter
shows, about development. Several. fmther challenges lie ahead. One of these is
to build stronger bridges between what might be called cognitive-level models
and our evolving understanding of the details of neuronal computation. Another
will be to develOp more fully the application of cognitive models to higher4evel
aspects of cognition. The hope is that the attempt to Meet these and other
challenges will continue to lead to new discoveries about the mechanisms of
human thought and the principles that govern their operation and adaptation to
experience.
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