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When it comes to selecting an architecture for modeling cognition, we have a
choice. We can start with a symbolic architecture, in which the putative constitu-
ents of abstract cognition (symbols) are taken as modeling primatives; or we may
adopt an alternative view, that symbolic behavior emerges from the operation of
a system of simple, sub-symbolic processing units. Connectionist models take
this latter tack. In these models, processing occurs through the propagation of
activation among a number of simple processing units. The knowledge that
governs processing is stored in the strengths of the connections among the units.
And leamning occurs through the gradual adjustment of the strengths of these
connections. At first glance it may seem that such mechanisms are far removed
from symbolic thought. Yet we will argue in this chapter that they may form the
basis of the acquisition of a number of cognitive abilities, and that they may help
us answer basic questions about the process of cognitive development. Several
different kinds of answers have been given to these questions. We will see how
the connectionist framework opens them anew and suggests what may be differ-
ent answers in many cases.

THE PHENOMENA

The field of cognitive development is replete with examples of dramatic changes
in children’s thinking as they grow older. Here we give three examples: (a)
Failures of conservation and compensation, (b) Progressive differentiation of
knowledge about different kinds of things, (c) U-shaped leaming curves in lan-
guage acquisition.
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a2 MCCLELLAND AND JENKINS

Failures of Conservation and Compensation
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the developmental progression are quite interesting, as we shall see below.

Progressive Differentiation of Ontological Categories
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FIG. 3.1. Balance scale of i
the kind first used by | (
:(1':"5?),1;;(2!, la';er 9sed extensively by Siegler (%72'?:':;1"‘;? s
y X eprmted from Siegler, 1976, Fig. 1, w;th per'mi;:‘i;;:r s
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judgments, Keil was interested not in whether the child saw a sentence as true or
false, but in whether the child felt that one could make certain kinds of predica-
tions (e.g., that something is an hour long) when the something is member of a
certain “ontological category” (e.g., living thing). Keil found that children were
much more permissive in their acceptance of statements than adults were, but
their permissiveness was not simply random. Rather, they would accept state-
ments that over-extended predicates to categorics near the ones they typically
apply to, but would not extend them further. Thus some children will accept
predications like “The rock is asleep,” but not “The rock is an hour long.” It was
as though children’s knowledge of what predicates apply to particular categories
becomes progressively more and more differentiated, as illustrated in Fig. 3.2.
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FIG. 3.2. Four different “predictability trees” illustrating the progres-
sive differentiation of concepts as a function of age. Terms in capitals
at internal nodes in the trees represent predicates, and terms in lower
case at terminal nodes in the trees represent concepts that are
spanned by all the predicates written on nodes that dominate the
terminal. A predicate spans a concept if the child reports that it is not
silly to apply either the predicate or its negation or both to the concept.
Thus the first tree indicates that the child will accept “The girl is (not)
alive,” and “The chair is (not) tall”’ but will not accept *“The chair is
{not) alive.” Parentheses indicate uncertainty about the application of
a predicate. Redrawn from Keil, 1979, Appendix C, with permission.
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U-Shaped Learning Curves in Language Development

Early on children often get certain kinds of linguisti i
gl::' later get wrong; only later do they l'ec(')v::rg :::ﬁcfmi?cf)mst ;:mmh
e ‘::;':T: ‘l‘fl‘:;h: passive cc-msuuction, applied to semantically biased mact::
ale ,o Pt man was bitten by the dog.” (See Bever, 1970, for a discus-
ot e pment of the use of the 1ve construction.) Early in develop-
infon’nation ab(mc:m'c:lcatly interpret §uch Seatences; they appear to be using
et bou wrbt lples the different nouns typically play in the action
i o:' the ve tl;csmm: they te.nd to be comect only when the correct
respond diﬂ‘erentl;"l:i sucl?z::et:c:eumunwlc:thrzl?. :\ ot phon o en
resp : : , irst noun-|
,|“e';:‘ht.e s'enl::nwu:s c;nstmuts are ovsr-ﬁdden, and there is alengeh:yetzs it:;r:ur:;
Chibnen tlﬂ“:n by the dog” as meaning “The man bit the dog.” Finally,
terpret the sentence correctly again, but for a different reason. It woulci

THE QUESTIONS

The phenomena reviewed above rai . .
ment. Three of these questions t;reralse basic questions about cognitive develop-

® Are these different phenomena si
different domagy” o SIPIY unrelated facts sbout development in

® Are there principles that all of these phenomena exemplify?

* If there are principles, are the . .
ciples about development? Y domain specific, or are they general prin-

Different kinds of develo i
_ pmental theorists have ans ions i
:t;y dlﬂ'eren.tb ways. To Piaget, each failure of compe:m:u::l c!:ueshon§ m
s'calelctcd a single common developmental stage; the phenomena nacrvation
ically l’elated_ by the characteristics of the stage, and these ch, ristics
vided the basis for explanation. aracteristics pro-
Choom"sk"";.sm taken a very different approach. Keil (1979), followin
ciples of develo::z:: a;igl:wel;tv f_'ormlanguaﬁe, argued for domain specific pn‘n%
; ent. 1S that each cogniti i i
:‘3‘ PmVldediconstrau}ts on what can be leamedgm. ;;::;m;:sm;z (m:h:::
the child to ac:tuglh:::t::?::ill‘it::ﬁmt;: face o e ing it dramatically easie for
. in i ished i -
I8 provided by experience with the worlz:;,x= of the impoverished information that
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The main thrust of the remainder of this chapter is to argue that recent
developments in connectionist leaming procedures suggest a dramatic alternative
to these kinds of views. The alternative is simply the hypothesis that these
diverse developmental phenomena all reflect the operation of a single basic
learning principle, operating in different tasks and different parts of the cognitive

system.

THE LEARNING PRINCIPLE

The principle can be stated in fairiy abstract terms as follows:

Adjust the parameters of the mind in proportion to the extent to which their adjust-
ment can-produce a reduction in the discrepancy between expected and observed

events. ‘

This principle is not new. It might well be scen as capturing the residue of
Piaget’s accommodation process, in that accommodation involves an adjustment
of mental structures in response to discrepancies. (See Flavell, 1963, for a
discussion of Piaget’s theory.) It is also very similar to the principle that governs
learning in the Rescorla-Wagner model of classical conditioning (Rescorla &
Wagner, 1972). What is new is that there exists a learning procedure for multi-
layer connectionist networks that implements this principle. Here, the parameters
of the mind are the connections among the units in the network, and the pro-
cedure is the back propagation procedure of Rumelhart, Hinton, and Williams
(1986). :

The leaming principle lies at the heart of a number of connectionist models
that learn how to do various different kinds of information processing tasks, and
that have applications to phenomena in cognitive and/or language development.
Perhaps the simplest such model is the past-tense model of Rumelhart and
McClelland (1986). The development of that model predated the discovery of the
back propagation learning procedure, thereby forcing certain simplifications for
the sake of developing an illustration of the basic point that lawful behavior

might emerge from the application of a simple principle of learning to a connec-
tionist network. Subsequent models have used back propagation to overcome
some of these limitations. Included in this class are NETtalk (Sejnowski & -
Rosenberg, 1987) and a more recent model of word reading (Patterson, Seiden-
berg, & McClelland, 1989). The present effort grew out of two observations of
similarities between the developmental courses seen in models embodying this
principle, and the courses of development scen in children: First, the course of
leamning in a recent model of concept learning by Rumelhart (1990) is similar to
aspects of the progressive differentiation of concepts reflected in Keil’s (1979)
studies of predictability. Second, the course of leaming in a recent model of
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46  MCCLELLAND AND JENKINS

sentence comprehension by McClelland, St. John, and Taraban (1989) mitrors
aspects of the progression from reliance on semantic constraints, to reliance on
word order, to, finally, reliance on complex syntactic patterning such as the
passive voice. We do not mean to claim that the models in question are fully
adequate models of the developmental progression in either case; we only-mean
to claim that they seemed suggestive: They raised the possibility that part of the
explanation of these and other developmental phenomena might be found in the
operation of the learning principle as it adjusts connection strengths in a network
subjected to patterns arising in its environment.

The remainder of this chapter presents two experiments assessing the ap-
plicability of this conjecture to another developmental phenomenon, namely the
acquisition of the ability to take both weight and distance into account in the
balance scale task described above. The task has been studied extensively by
Siegler and his colleagues (Siegler, 1976, 1981; Siegler & Klahr, 1982), and
quite a bit is known about it. We will first review the developmental findings.
Then we will describe a connectionist model that captures these phenomena by
applying the learning principle stated above (McClelland, 1989). As a follow-up,
we will describe a second model that captures effects of specific experience on
developmental change (Jenkins, 1986), :

DEVELOPMENT OF JUDGMENTS OF BALANCE

In an important monograph, Siegler (1981) studied children’s performance in the
balance scale task and three other tasks in which two cues had to be taken into
account for correct performance. In all cases, as in the balance scale task, the
correct procedure requires multiplication. For example, in the balance scale task,
to determine which side will g0 down, one must multiply the amount of weight
on a given side of the beam times the distance of that weight from the fulcrum.
The side with the greater product will go down; when the products are the same,
the beam will balance.

Siegler studied children in several age groups, as well as young adults. Each
child was asked to judge 24 balance problems. In each case, the scale was

immobilized so that there was no feedback. The 24 problems could be divided
into four of each six types:

* Balance. In this class of problem, the weight is the same on both sides of
the scale and the weight is the same distance from the fulcrum on both
sides. .

* Weight. In these problems, the weights differ but distance from the fulcrum
is the same on both sides,

* Distance. Here the weight is the same on both sides, but the distance from
the fulcrum differs. ‘
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i distance di in conflict, in that the
flict. Here both weight and distance differ and are in ‘ 1, in
) Sz?gl:t_is greater on one side but the distance fl'Ol;l the fulcrum is greater on
the other. There are three types of conflict problems: | -
. eC::nﬂict—weight. In these cases, the side with the greater wexg.ht has the
greater torque (that is, the greater value of the product of weight times -
. 'dCl:nﬂict)-.distance. In these cases, the side with the greater distanqe has

the ter torque. .
. Cdng:;—balance. Here the torques are the same on both sides.

Siegler’s analysis of children’s performance assumed t.hat childt;: use mla:
overned procedures. Four such procedures or rules as Slegle.r c_nl them :
fhown in Fig. 3.3. Each of these rules corresponds to a vdlsunct.patten: o1
rformance over the six problem types. For example, chlk!ten using Rule i
Elfould say the side with the greater weight will go goﬂ\:'l;ll‘n u?:;iha: pmil;:e;:ls a:nce
i hould thi e w
in all three types of conflict problems. They s il alance
i ' ral, the mapping from
balance problems and distance problems. ln general, ;
::les to expzcted performance is extremely suh:lght:;orv:lard. 'I;Il\;htznlazd p:l:sl:at:caet
plication i i ion muddle through when w
needs explication is the mstn!ct.lon wgtees vandomly aruon the
ict in Rule 3. In practice it is assumed to mean “gues ! - 8 the
:;)tz&l:ti:/:s,” so that 1/3 of the responses would be left-side-down; 1/3 right
i , and 1/3 balance. . .
md;i:(g);:: c:lrlnpared the performance of each child tested with each mle'i da::d
counted discrepancies from predicted performange based on the rule. Chnusmn
who scored less than four discrepancies from a given rule were scored as using
tha;;ru l:;n purposes, there are four basic findings that emerge from Siegler’s

analysis:

I' behavior. In general, performance of children over the age of § is
ext:e.mtr;vr?gular in the balince scale task. Overall about 90% of children tested
conform to one of the four rules.

2. Developmental progression. As childxgn get ?lder, they appeartRo ;;rogxess
through the use of the different rules. 'Ihe'prqgtesslon from Rule 1 t? ul ;edc::
be thought of as a progression in which at first the weight cue is reli o

- exclusively, while at the end distance and weight are both taken into a:cﬂo::lmm
between (Rule 2), distance is taken into account only if it does notl lco lmdems
the weight cue. Children aged 5 to 7 typically use Rule 1, and college s e
typically use rules 3 or 4. Many college students do not have explicit know bgl:
of the torque principle. Children younger than age S tend not to be scorain
strictly in terms of one of the rules; however, they appear to show an increasing
tendency to behave in accordance with Rule 1.
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FIG. 3.3. Siegler's {1976, 1981) four “rules”
scale problems. Each Rule is in fact a full p
single rule. Reprinted with permission from

for answering balance
rocedure, rather than a
Siegler (1981), Fig. 1.

adequate to characterize
gler studied. Though the develop-
domains, there was in all cases a
trend from simpler to more complex rules with development.

4. Lack of correlation between domains, Even though children seem to prog-
ress through the same rules in different domains,

they do not do so in lock-step;
the correlation across domains is low, particularly in terms of the higher-num-
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bered rules, so that children who are showing Rule 3 beh.avior in one task may be
showing Rule 1 behavior in another and Rule 4 in a third.

MODEL OF THE BASIC PHENOMENA

describe here was developed by McClelland (1989). Itis ba§ed on
g‘:i:‘,l:'ov?::kw:y Jenkins (1986) relevant to othcr aspects of Sieglf;r’s data (Siegler,
1976; Siegler & Klahr, 1982) to which we will turn our attent.lon belo“'v.

The model is sketched in Fig. 3.4. Of course, the model is a dfastlc over-
simplification of the human mind and of the task; but as we shall see it allows tll:s
to capture the essence of Sieglerl’s ;’emdml;g:& ::: to-see them emerge from the

ion of the leaming principle descri ve.
ope’lr:tel(::o:lelthconsists o%‘ f set ol;' input units, to which balance problems can be
presented as patterns of inputs; a set of output units over which the answer to

L R

Distance

00000 R 00000

1L Al

FIG.34. The nétwork used in the simulation of the development of
performance in the balance scale task.
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each problem can be represented; and a set of hidden units, betw, i
the output. Connection i i i unis 0 o hid den
the < t‘t)polltput et s run from input units to hidden units and from hidden
The input units can be divided into two i
represent information about weight and the og:ru?ssu:i; (t)o lgm fn;'f):ns:: o
abou.t distance. In each case the input representation imposes as little stmct!n'e::
possible on tht? Input patterns. Each possible value of weight or distance from the
fulcn.xm is assn-gned a separate unit. The ordering of values from low to high i
not given in this representation; the network will have to learn this orderin Fo:
tl.le convenience of the reader, the units are arranged in rows according to \gw;hich
snde_ of tlfe beam they are from, and within each row they are arranged from left
to nght in order of increasing weight or distance from the fulcrum; but thi
ordering is unknown to the mode! before it is trained, as we shall see, )
) '!"hough the two dimensions are not intrinsically structured for the m'odel the
esign pf the network does impose a separate analysis of each dimension. :lhis
separation tun_ns out to be critical; we will consider the implications of this
architectural simplification below, The separation is implemented as follows:
ice:v?; semte pairs qf hic.iden units for each dimension. Two hidden unit.v;
e tgu m the weight input units and two receivg input from the distance
Each of the four hidden units projects to each of the two i
gu.tput unit can be thought of as a “left side down” unit, a::qt)l:: l:;lgl:;-::;eal: .
right s:d.e down unit.” Thus a correct network for the task would tumn on tha
output.umt corresponding to the side with the greater torque, and would turn 1;'
the unit for the Otht".l‘ side. For balance problems, we assul;le that the netwo(:'k
‘slhould turn both units on half-way. Note that this coding of the output patterns
oes tell the network that balance is between left side down and right side-down.

the units whose activations are 0,

The inputs are propagated forward to the hj i i i
simply oot o idden units. Each hidden unit

net, = X wya, + bias,
J

Here j ranges over the input units. Each hi i
i . idden i ivati
according to the logistic function: it thet s ts scivaton

- 1
ai - l + e —ner,
i
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In these equations, w;, is the strength of the connection to hidden unit { from
input unit j, a, is the activation of input unit j, and bias, is the modifiable bias of
hidden unit i. This bias is equivalent to a weight to unit i from a special unit that
is always on.

Once activations of the hidden units are determined, the activations of the
output units are determined by the same procedure. That is, the net input to each
output unit is determined based on the activations of the hidden units, the weights
from the hidden units to the output units, and the biases of the output units. Then
the activations of the output units are determined using the logistic function.

Responses. The activations of the output units are real numbers between 0
and 1; to relate its performance to the balance scale task, these real-valued
outputs must be translated into discrete responses. If the activation of one output
unit exceeded the activation of the other by .333, the answer was taken to be
“more active side down.” Otherwise, the answer was assumed to be “both sides

equal.”

Learning. Before training begins, the strengths of these connections from
input to hidden units and from hidden to output units are initialized to randomi
values uniformly distributed between +.5 and —.5. In this state, inputs lead to
random patterns of activity over both the hidden and output units. The activations
of the output units fluctuate approximately randomly between about .4 and .6 for
different input patterns. The network comes to respond correctly only as a result
of training. Conceptually, training is thought of as occurring as a result of a series
of experiences in which the network is shown a balance problem as input;
computes activations of output patterns based on its existing connection weights;
and is then shown the correct answer. The signal that drives learning is the
difference between the obtained activation of each output unit and the correct or
target activation for that unit. The back-propagation procedure of Rumelhart,
Hinton, and Williams (1986) is then used to determine how each connection
strength in the network should be adjusted to reduce these differences. Since the
procedure is quite well-known, suffice it to say that it exactly implements the
learning principle stated above, and restated here in network terminology:

Adjust each weight in the network in proportion to the extent to which its adjust-
ment can produce a reduction in the discrepancy between the expected event and
the observed event, in the present context. ,

Here the “expected event” is the pattern of activation over the output units
that is computed by the network, the observed event is the pattern of activation
the environment indicates these units have, and the present context is the pattern
of activation over the input units. Note that the direction of change to a connec-
tion (positive or negative) is simply the direction than tends to reduce the dis-
crepancy between computed output and the correct or target output.
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52 MCCLELLAND AND JENKINS

Environment. The environment in which a network '
strong role in determining what it learns, and parﬁcularl)}e;)mesdg\lr:{:p:n:tz
course of le.aming. The simulations reported here were based on the assumption
that the environment for learmning about balance problems consists of €xperiences
tl?at vary more frequently on the weight dimension than they do on the distance
dn‘nenswn. Of course, we do not mean to suggest that all the learning that
chllc.in.en do that is relevant to their understanding of balance takes the form of
explicit balance problems of the kind our network sees, Rather, our assumption
Fhat the experience on balance problems is dominated by problems in which there
is no \(anablllty in weight is meant as a proxy for the more general assumption
that chfldren generally have more experiences with weight than with distance as a
facTt?‘:-e in determining the relative heaviness of something. !

specific assumptions about the sequence of learning experi
follows. The environment consisted of a list of training exfm;ﬁn:::::'n‘i":: tha:

Training and lesting regime. Four simulati i
) me. On runs were carried out, tw
wnt.h each of the two corpora Just described. In each run, training consisted of :

Williams ( 1?86 P. 330); parameters were n = 0.075, a = .9),

. After weight updating at the end of each epoch, the network was given a 24
ltem test, containing four problems of each of the six types described above

taken .fnom an experiment of Siegler’s. (A few of the examples had to be mod"
fied since Siegler’s ex iment had used up to six pegs.) ]

A Comment on the Simulation Model

'lt‘:i: model. descril.)ed above obviously simplifies the task that the leamner faces and
: ctl.lres it f(?r him to some degree. In particular, it embodies two principal as-
umptions whn;h are crucial to the successful simulations we will consider below:
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Environment Assumption. The model assumes that the environment is
biased, so that one dimension—in this case weight—is more frequently avail-
able as a basis for predicting outcome than the other,

Architecture Assumption. The model assumes that the weight and distance
dimensions are analyzed separately, before information about the two dimensions
is combined.

Both of these assumptions are crucial to the success of the model. In an
unbiased environment, both cues would be learned equally rapidly. Effects of
combining the cues from the start as prescribed by the architecture assumption
are more complex, but suffice it to say for now that the apparent stagelike
character of performance is much less clear unless this assumption is adopted.

An important topic for further research will be to examine what variants of
these assumptions might still allow the model to be successful. For example,
regarding the environment, differences in salience (i.e., strength of input activa-
tions) and structuredness of the dimensions might also produce similar results.

The issue of structuredness of the dimensions is a key point that needs to be
considered as it relates to the present simulation. For both dimensions, the input
representations encode different weights and distances from the fulcrum using
distinct units. This means that different values are distinguishable by the model,
but they are not structured for it; for example the input itself provides no indica-
tion that a distance or weight of 3 is between 2 and 4. The network must learn to
represent the weights and distances in structured ways in order to solve the
balance problem. We will see that it does this later.

Resuits

In general performance of the model conformed to one of the four rules described
by Siegler. Over the four runs, the model fit the criteria of one of Siegler’s four
rules on 85% of the occasions, not counting an initial pre~Rule 1 period (In
Siegler, 1981, the conformity figure is about 90%). Of course, the model was not
consulting these rules or following the step-by-step procedures indicated in them;
rather its behavior was simply scorable by Siegler’s criteria as consistent with the
succession of rules. Excluding the initial period, failures to fit the rules were of
three types: Cases in which a rule fit except for a position bias that gave difficulty
on balance problems, cases in which performance was borderline between Rules
I'and II, and combinations of these two problems. (Siegler [personal communica-
tion] does find some borderline cases between Rule 1 and Rule 2, but the position
bias cases are not typical of children’s performance.)

Overall Developmental Trends. Epoch by epoch performance in each of the
four runs is shown in Figs. 3.5 and 3.6. One generally observes the expected
developmental progression. Each simulation run is slightly different, due to
differences in the random starting weights and the sequence of actual training
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FIG. 3.5. Epoch by epoch i
2 0 performance of the simulation model i
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mance on the borderline between Rt?los 1and ;?rresponds to perfor
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experiences, but there are clear common trends. Over the first 10 epochs or so,
the output of the model was close to .5 on all test patterns; by our scoring criteria,
all of these outputs count as “balance” responses, but of course they really
represent a stage in which neither weight nor distance governs performance. The
next few epochs represent a transition to Rule 1, in that in this phase the model is
showing some tendency to activate the output unit on the side with the greater
weight, but this tendency is variable across patterns and the discrepancy between

. the activations of the output units is not reliably greater than .33 when the

weights differ.

After this brief transition, performance of the model has generally reached the
point where it was responding consistently to the weight cue while systematically
ignoring the distance dimension. This pattern continued for several more epochs.
There was a brief transitional period, in which the model behave inconsistently
on the distance problems crucial to distinguishing between Rule 1 and Rule
2 behavior. After several epochs in this phase, use of the distance cue reached
the point where performance on all types of conflict problems became variable.
The model generally continued in this phase indefinitely, sometimes reaching the
point where its performance was generally scorable as fitting Rule 4 and some-
times not.

The variability in the model’s performance from epoch to epoch is actually
quite consistent with test-retest data reported in Siegler (1981). Rule 2 behavior
is highly unstable, and there is some instability of behavior in other rules as well.

Performance in each phase. Siegler’s criteria for conformity to his rules
allow for some deviations from perfect conformity; in fact only 83% of test
problems must be scorable as consistent with the rule. Given this, it is interesting
to see whether the discrepancies from the rules that are exhibited by the model
are consistent with human subject’s performance. In general, they seem to be
quite consistent, as Fig. 3.7 indicates. Each panel shows percent correct perfor-
mance by the model averaged over the tests on which the model scored in
accordance with one of the four rules. Also shown are data from two groups of
human subjects as well as the pattern of performance that would be expected
from a perfect rule user. :

For Rule 1, the model differs very little from humans. For Rule 2, again the
correspondence to human data is very close. Both the model and the humans
show some slight tendency to get conflict-distance problems correct, and to
occasionally miss distance and balance problems. For both Rule 1 and Rule 2,
the tendency to miss balance problems is slightly greater in the model than in the
children’s data. For Rule 3, the model exaggerates a tendency seen in the human
data to be correct on conflict—weight problems more often than on conflict—
distance problems. The major discrepancy from the data is that the model is too ac-
curate on conflict-balance probiems. For Rule 4, the model again exaggerates a
tendency seen in the human data to have residual difficulties with conflict problems.
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FIG. 3.6. Epoch by epoch performance of the simul i

| N ation model in the
two runs with a 10 to 1 bias favoring problems in which distance did
not vary. Performance is scored by Rule, as in Fig. 3.8.

With the exception of the conflict-balance i
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Subj ! e time. It
is, indeed, easy for the adult subjects who contribute to the Rule 4 results to
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FIG. 3.7. Children’s performance by problem type on the balance
scale task, together with the performance of the simulation model and
expected performance based on each rule. The heavy line with dia-
monds indicates children’s performance. The model’s performance is
given by the light line with x’s, whereas performance predicted from
the rule is given by the light line with squares. For each child and each
test of the simulation, performance was precategorized according to
the best fitting rule. Then, percent correct responses by problem type
were calculated averaging over children or simulation tests falling into

each rule.

follow the torque rule if instructed specifically in this rule. However, it is evident
that the subjects who fall under the Rule 4 scoring criteria do not in fact adhere
exactly to the rule. Perhaps this group includes some individuals performing on
the basis of implicit knowledge of the trade-off of weight and distance as well as
some who explicitly use the torque rule, and perhaps some individuals use a
mixture of the two strategies.

Further correspondences between the model and child development. So far
we have seen that the balance scale model captures the pattern of development
seen in the studies of Siegler (1976, 1981). There are two further aspects of the
developmental data which are consistent with the gradual buildup of strength on
the distance dimension that we see in the model:

1. Wilkening and Anderson (in press) present subjects with one side of a
balance beam, and allow them to adjust the weight on the other side at a fixed
distance from the fulcrum to make the scale balance. Over the age range of 9 to
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20, in which children are generally progressing from late Rule 1 or Rule 2 to
Rule 3 or Rule 4 according to Siegler’s methods, they find an increasing sen-
sitivity to the distance cue. Unfortunately it is difficult to be sure whether this
reflects different numbers of subjects relying on the distance cue, or (as we see in
the model) differences in degree of reliance among those who show some sen-
sitivity to the distance cue.

2. For children who exhibit Rule 3 on Siegler’s 24-item test, careful assess-
ment with a larger number of conflict problems indicates the use of cue compen-
ztion strategies, rather than random guessing (Ferretti, Butterfield, Cahn, &

rkman, 1985). Thus children are not simply totally confused about conflict
problems during this stage but have some sensitivity of relative magnitudes of
cues, as does the model. The exact degree of comrespondence of the model’s

performance and human performance on these larger tests remains to be ex-
plored.

The mechanism for developmental change. Given the generally close corre-
spondence between model and data, it is important to understand just how the
model performs, and how its performance changes. To do this, it is helpful to
examine the connections in the network at several different points in the learning
Process. Figure 3.8 displays the connections from the run that produced the
results shown in the top panel of Fig. 3.6, at 4 different points during learning: At
epoch 0, before any leamning; at epoch 20, early in the Rule 1 phase; at epoch 40,
at the end of the Rule 1 phase; and at epoch 100, when the simulation was
terminated. Each of the four large rectangles in each panel shows the weights
coming into and out of one of the four hidden units. The two on the left receive
input from the weight dimension, and the two on the right receive input from the
distance dimension.

In the first panel, before learning begins, all the connection strengths have
small random values. In this situation, the output of the hidden units is not
systematically related to magnitudes of the weights or distances, and is therefore
of no use in predicting the correct output. At this point, the hidden units are not
encoding either relative weight or relative distance, and are therefore providing
no information that would be useful for predicting whether the left or right side
should go down.

The first phase of learning consists of the gradual organization of the connec-
tions that process the amount of weight on each side of the balance scale. Recall
that the network receives problems in which the distance cue varies much less
frequently than problems in which the weight cue varies. Learning to rely on the
weight cue proceeds more quickly than learning to rely on the distance cue as a
simple result of this fact. The rate of leamning with respect to each type of cue is
relatively gradual at first, but then speeds up, for reasons that we will explore
below. The relatively rapid transition from virtually unresponsive output to fairly
strong reliance on the weight cue represents the brief transition to Rule 1 respond-
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representing before, namely the relative magnitude of the inputs. Note that this
information is not explicitly contained in the input, which simply distinguishes but
does not order the different possible values of weight on the two sides of the
balance scale.

At this point, the connection strengths in the distance part of the network
remain virtually unchanged; thus, at the hidden unit level, the network has not
yet learned to encode the distance dimension.

Over the next 20 epochs, connections get much stronger on the weight dimen-
sion, and we begin to see some organization of the distance dimension. While
this is going on, the overt behavior of the network remains Rule 1 behavior. The
network is getting ready for the relatively rapid transition to Rule 2 and then to
Rule 3 which occurs over the next several epochs of training (as shown in the top
panel of Fig. 3.6), but at epoch 40, the end of the Rule 1 phase, the distance
connections are still not quite strong enough that they can yet push activations of
the output units out of the balance range. With further learning, the distance cue
becomes stronger and stronger; this first causes the distance cue to govern perfor-

. mance when the weights are in balance, giving rise to Rule 2 behavior. Further
strengthening causes the distance cue to win out in some conflict problems,
giving rise to behavior consistent with Rules 3 and 4. At epoch 100 of this
particular run, the weight dimension maintains a slight ascendancy, so that with
the particular conflict-balance problem illustrated, the model activates the left-
side down unit, corresponding to the side with the greater weight, more than it
activates the right-side down unit.

A couple of aspects of the developmental progression deserve comment. As
Fig. 3.9 illustrates, the connection strengths are largely insensitive to differences
early on, then go through a fairly rapid transition in sensitivity and then level off
again. The acceleration seen in learning is a result of an inherent characteristic of
the gradient descent learning procedure coupled with the architecture of the
network. The procedure adjusts each connection in proportion to the magnitude
of the effect that adjusting it will have on the discrepancy between correct and
actual output. But the effect of a given connection depends on the strengths of
other connections. Consider the connection coming into a hidden unit from one
of the input units. An adjustment of the strength of this input connection will
have a small effect on the output if the connections from the hidden unit to the
output units are weak. In this case, the input connection will only receive a small
adjustment. If however, the connections from the hidden units to the output units
are strong, an adjustment of the strength of the input connection will have a much
larger effect; consequently the leamning procedure makes a much larger adjust-
ment in this case. A slightly different story applies to the connections from the
hidden units to the output units. When the connections from the input to the
hidden units are weak and random, the activations of the hidden units are only
weakly related to the correct output. Under these circumstances, the adjustments
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weakly encoded. While it is still too weak to actually cause the output to be
strongly enough affected by the distance cue to actually affect performance, it is
strong enough for a small amount of experience to cause a further increase in
strength to the point where the distance cue is strong enough to influence perfor-

mance.

Feedback Simulation Trials

The general approach taken here can be extended to cover the full range of training
experiments carried out by Siegler (1976). Simulations more closely matching the
design of these experiments were carried out by the second author. For these .
simulations, a similar architecture was used. One major difference was the
addition of 2 more output units. These additional output units received input from
the hidden units on the distance dimension. In general, these additional output
units, from now on to be referred to as distance encoding units, were not involved
in the simulations except where outlined below. -

The purpose of these simulations was to model the training experiences from
Siegler’s second and third experiments. The issue at this point was whether the
model could simulate the effects of training with distance problems versus training
with conflict problems.

To simulate the stability of the system’s knowledge about the weight dimen-
sion, the learning mechanism’s proportion of change with respect to error for the
connections from thie weight units and the weight internal units and from the
weight internal units to the balance scale output units (their learning rates) were,
respectively, .00 and .025, while the proportion of change with respect to error
for all of the distance dimension connections was .05.

To begin the simulation of Siegler’s second experiment, the model was ini-
tialized by training only the connections between the weight input units and the
weight-hidden units, and between the weight-hidden units and the balance scale
output units. This training was performed by presenting the model with 50 epochs
of input and feedback for each possible configuration of weight and balance
problems with no distance information provided to the model. On the balance
scale prediction task, this system produced perfect Rule 1 behavior. From this base

performance level, the model received two types of training in separate sessions.
In one session, the model received feedback training similar to the distance
feedback training in Siegler’s second experiment. That is, the model was trained
with 16 different patterns and their associated correct responses; 12 patterns with
equal weight input to the two sides of the weight input units and different distance
inputs to the two sides of the distance input units (Distance problems), 2 patterns
with equal weight and distance inputs (Balance problems), and 2 patterns with
different weight inputs to the two sides of the weight input units and equal distance
input to the two sides of the distance input units (Weight problems).
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64 MCCLELLAND AND JENKINS

In the second session, after reinitialization of the system to the base perfor-
mance level, the model received feedback training similar to the conflict training
in Siegler’s second experiment. That is, the model was trained with 16 different
patterns and their associated correct responses; 12 patterns with greater weight
input to one side of the weight input units and greater distance input to one side
of the distance input units (Conflict problems), and 2 patterns with equal weight
and distance inputs (Balance problems), and 2 patterns with different weight
inputs to the two sides of the weight input units and equal distance input to the
two sides of the distance input units (Weight problems).

In both of these sessions, the model received 40 epochs (640 trials) of train-
ing. A measure of the effectiveness of the training trials was plotted over the
course of the forty training epochs. The effectiveness measure, called the sum of
squares error term (SSERROR), measures the difference between the activations
of the prediction responses of the model over the training set of patterns and the
activations of correct responses for the set of patterns. Therefore, a large error
term represents an inability of the model to produce correct predictions, while a
small term represents a close match between the predictions of the model and the

Figures 3.10a and 3.10b show SSERROR plotted over training epochs during
distance training and conflict training, respectively. In Fig. 3.10a, we can see
that distance training causes the model’s predictive performance over the training
problem set to improve dramatically. In contrast, Fig. 3.10b shows that conflict
training did not increase the model’s predictive performance over the training
problem set. These graphs indicate that, in the 40 epoch time frame, the model
learned from the distance training but did not learn from the conflict training.

A more dramatic demonstration of this difference in learning was exhibited in
the model’s performance on the prediction task following the feedback training.
Like many of Siegler’s five year old subjects, the model learned to perform as a
rule 2 user after distance training; in addition to getting balance, weight and
conflict-weight problems correct, the model was able to correctly predict dis-
tance problems as well. After conflict training, however, the model did not learn
to perform at all different from rule 1 behavior. Hence, the model closely simu-
lated the behavior of the 5-year-olds.

The next step in the evaluation of the model was to give distance encoding
training to the base performance model. The model’s encoding training was not
the same as the training that Siegler presented to his subjects; instead, this
training was only meant to get the model to categorize the distance input into one
of the three relative values. Thus, this training involved modification of only the

connections between the distance input units, the hidden units of the distance
dimension, and the distance encoding units at the output level. This encoding
training set included every configuration of distance as input to the network (36
pattems) paired with the corresponding relative distance value (more distance
left, more distance right, or equal distance) as the target feedback for the distance
encoding units. :
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+ the earlier conflict training session. In contrast to Fig. 3.10b, the plot of the
effectiveness of conflict training after encoding training (Fig. 3.10c) shows that
conflict training dramatically increases the model’s predictive performance over
the training problem set. This graph indicates that the model was able to learn
from the conflict training after encoding training. Following this training, the
model was again tested on the prediction task.

This time, the model was able to correctly use the distance information to
predict distance problems. It also learned, like the children, not to rely strictly on
the weight cues to predict the conflict problems and thus its performance went
down on the conflict weight problems (from 100% correct to 75% correct) and up

on the conflict distance and conflict balance problems (both from 0% correct to

50% correct).

In essence, the model learned to perform as a rule 3 user after the conflict
training following the encoding training. Hence, the model simulated the learn-
ing abilities of many of the 5- and 8-year-olds on the conflict training task after
receiving distance encoding training.

To understand how this model works, it is important to understand the internal
Structure that develops during training. So, before distance training, after dis-
tance training, after conflict training, and after encoding training followed by
conflict training, the model was presented with 15 different distance configura-
tions (patterns of activation) across the distance input units. There were five
configurations each; of more distance right, more distance left, and equal dis-
tance (balance). After each presentation of a distance configuration, the average
activation of the two sets of units of the distance internal group were measured
and plotted against each other. The two sets of units were chosen by examining
the activation values and attempting to determine which, if any, of the units
tended to have correlated activation values. Units with correlated activation
values were considered members of a common set for the purposes of this
analysis. Units could not be chosen a priori due to fact that the leaming mecha-
nism recruits units to code similar functions only during the course of training.

To display these activations in response to different inputs, two-dimensional
graphs were constructed with each axis specifying the average activation level of
one set of units. For each graph, five points are plotted which mark the activa-
tions of the two sets of internal units when the five configurations of more
distance right were presented—these are marked with an ‘R’. Likewise, each of
the five points for the internal activations for the configurations of more distance
left and balanced distance are marked with an ‘L’ and a ‘B’, respectively. Upon
examining these activation values before training, it was discovered that these
sets of input pattemns were not discriminated in any way in the distance internal
group. Because the connection strengths of the connections to these units were
not trained, every input pattern produced almost the same activation pattern at
the internal level and thus all of the points ended up on top of each other. Thus,

this graph is not shown. However, when this same procedure was performed after.
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clusters of their distance relative relationships. Without this abstract relationship,
the model was unable to generalize to new configurations and thus, in the
prediction task, did not change its behavior. However, when this analysis was
performed after encoding training, (which produced the relative distance repre-
sentations at the internal level as shown in Fig. 3.11c), the model was able to
leam to use relative distance cues on the prediction task.

Shortcomings of the Model

Taken together, the two versions of the simple network model of the balance
beam task that we have described above exhibit a striking correspondence with
many aspects of the developmental facts. These correspondences have, we think,
important implications for theories of cognitive development. Before we turn to
these correspondences, we first consider a few shortcomings of the model. Three
failures of the first version to fit aspects of Siegler’s data must be acknowledged:
First, the model can never actually master Rule 4, though some subjects clearly
do. Second, it’s behavior during Rule 3 is slightly different from humans (though
it should be noted that the “human” Rule 3 pattern is actually a mixture of
different strategies according to Klahr and Siegler, 1978). Third, it can exhibit
position biases that are uncharacteristic of humans, who seem (at least, from the
age of 5 on) to “know” that there is no reason to prefer left over right.

There are other shortcomings at well. Perhaps the most serious is in the input
representations, which use distinct units to represent different amounts of weight
and distance. This representation was chosen because it does not inherently
encode the structure of each dimension, thereby forcing the network to discover
the ordering of each dimension. But it has the drawback that it prevents the
network from extrapolating or even interpolating beyond the range of the discrete
values that it has experienced.

Finally, Siegler has reported protocol data that indicates that subjects are often
able to describe what they are doing verbally in ways that correspond fairly well
to their actual performance. It is not true that all subject’s verbalizations correctly
characterize the Rule they are using, but it is true, for example, that subjects who
are sensitive to the distance cue mention that they are using this cue and those
who are not tend not to mention it. The model is of course completely mute.

What are we to make of these shortcomings in light of the overall success of
the model? Obviously, we cannot take it as the final word on development of
ability to perform the balance scale task. We would suggest that the model’s
shortcomings may lie in two places: First, in details of the encoding of inputs and
of the network architecture; and second, in the fact that the model only deals with
acquisition of implicit knowledge. ‘

Regarding the first point, it would be reasonable to allow the input to encode
similarity on each dimension by using input representations in which each unit
responded to a range of similar values so that neighboring weights and distances
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ced overlapping input representations; furthermore, the inputs could well
lr;::kd: use of a .?Qﬁfe cgde of magnitude to keep values with.in a fixed range.
This would probably overcome the interpolation and extrapolafuon problems (we
have no stand on whether such codings are learned or pre-wired).

These kinds of fixes would not allow the model to u:uly master Rule 4 and
perhaps rightly so, since it seems likely that l.lule 4.(unhke the other _rules) can
only be adhered to strictly as an explicit (arithmetic) ru!e. Indeed, it must be
acknowledged that there is a conscious, verbally accesgnble component to the
problem solving activity that children and adults engage in when they cfonfrc_)n.t a
problem like the balance scale problem. The model does not address this activity
itself. However, it is tempting to suggest that the model captures the gra(_iual
acquisition mechanisms which establish the possible contents of th?se conscious
processes. One can view the model as making available re.presen‘tatl_ons of differ-
ing salience as a function of experience; these representations might serve as the
raw material used by the more explicit reasoning processes that appear to play a
role. This is of course sheer speculation at this point. It will be an l-n.lportant part
of the business of the ongoing connectionist exploration of cognitive develop-
ment to make these speculations explicit and testable.

IMPLICATIONS OF THE BALANCE SIMULATIONS

tures several of the more intriguing aspects of cognitive- d.eyelop-
"In'h;“m (l,td::t;taupres its stage-like character, while at the same ti:pe exhibiting an
underlying continuity which accounts for gradua! change in readiness to movc;l (:n
to the next stage. It captures that fact that behavior can often seem very muc 'b?
be under the control of very simple and narrow rule.s (t':. g., Rule 1), yet exhibit
symptoms of gradedness and continuity when tested.m different ways. It captures
the fact that development, in a large number of dlt.ferent. domains, progresses
from an initial over-focussing on the most salient dimension of a task or prob-
lem—to the point where other dimensions are not even Fl.lcoded—followen.i bya
sequence of further steps in which the reliance on the initially unattended dimen-
i ually increases. .
sm?\ﬁmiuied previously, the model can be seen as implementing the accor:;
modation process that lies at the heart of Piaget’.s tl.leory of developmen
change. Accommodation essentially amounts to ad;ustmg mt?ntal sm_lcmref:o to
reduce the discrepancy between observed events and expectations derived thm
the existing mental structures. According to Flf!vell (1963), Piaget stre.ssedh e
continuity of the accommodation process, in spite (_)f the overtly stage-hkefch ar-
acter of development, though he never gave a particularly clear account o ) oW
stages arise from continuous learning (see Flavell, 1963, pp..24-4-.2:19 or a
description of one attempt). The model provides such a description: it Sh(l,i:s
clearly how a continuous accommodation-like process can lead to a stage-like
progression in development.
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Changes in representation and attention through the course of develop-
mens. When a balance scale problem is presented to the model, it sees it in
different ways, depending on its developmental state. At all times, information is
in some sense present in the input for determining what is the correct response.
However, at first this information produces no real impression; weak, random
activations occur at the hidden level and these make weak, random impressions
at the output level. At the beginning of the Rule 1 behavioral phase, the model
has learned to represent relative amount of weight. The pattern of activation over
the hidden units captures relative weight, since one unit will be more activated if
there is more weight to the right, and the other will be more activated if there is
more weight to the left; both units take on intermediate activations when the
weights balance. At this point, we can see the model as encoding weight, but not
distance information. Indeed, as we have seen at this point the network could be
said to be ignoring the distance cue; it makes little impact on activation, and
leaming about distance is very slow at this point. At the end of the Rule 1 phase,
in spite of its lack of impact on overt behavior, the network has learned to
represent relative distances; at this point it is extremely sensitive to feedback

- about distance; it is ready to slip over the fairly sharp boundary in performance

- between Rule 1 and Rule 2. Thus, we can see the Rule 1 stage as one in which
overt behavior fails to mirror a gradual developmental progression that carries the
model from extreme unreadiness to learn about distance at the beginning of this
phase to a high degree of readiness at the end.

This developmental progression seems to resolve the apparent paradoxical
relation between observed stage-like behavioral development and assumed con-
tinuity of learning. To us this is the most impressive achicvement of the model; it
provides a simple, explicit alternative to maturational accounts of stage-like
progression in development. ;

It must be noted, however, that the success of the model depends crucially on
its structure. In fact the results are less compelling if either of the following
changes are made: (a) if balance is treated as a scparate category, rather than
being treated as the intermediate case between left-side-down and right-side-
down; (b) if the connections from input to hidden units are not restricted as they
are here so that weight is processed separately from distance before the two are
combined. ' :

More generally, it is becoming clear that architectural restrictions on connec-

tionist networks are crucial if they are to discover the regularities we humans

discover from a limited range of experiences (Denker et al., 1987; Rumelhart, in
preparation). This observation underscores that fact that the leamning principle, in
itself, is not the only principle that needs to be taken into account. There proba-
bly are additional principles that are exploited by the brain to facilitate learning
and generalization. Just what these additional principles are and the extent to
which they are domain specific remains to be understood in more detail.

3. NATURE, NURTURE, AND CONNECTIONS 7"

Extending this observation a step further, we can see the connecttpmst frame;.
work as a new paradigm in which to explore basic qu?suons' about the relations o
nature and nurture. We may find that successful slmulatlo.n of. develo!)mental
processes depends on building in domain specific constraints in consndera-ble
detail; if so this would support a more nativist view of the basis of domain—
specific skills. On the other hand, it may tum out Shat a few other general
principles in addition to the learning principle are .suf.ﬁcnent to allow us to capture
a wide range of developmental phenomena. In this case we would be led towarfl
a much more experience-based description of development. In either case, it
seems very likely that connectionist models will help us take a new look at these

important basic questions.

CONCLUSIONS

The exploration of connectionist models of human cognition and development is
still at gn carly stage. Yet already these,mo'dels have begun to capture avne: way
of thinking about processing, about leaming and, we I.iope the present ¢! apter
shows, about development. Several further challenges lie ahead One of these :s
to build stronger bridges between what might be called cogmtlvc—!evel mo:le s
and our evolving understanding of the details of nem.o'nal computation. Antlr enl'
will be to develop more fully the application of cognitive models to hlgher;;‘v:r
aspects of cognition. The hope is that the atten}pt to meet these and :
challenges will continue to lead to new discover,.ws abou.t the mechamsgns o

human thought and the principles that govern their operation and adaptation to

experience. N
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