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1: Bias, Generalization, and the craft of 
training networks

2: Introduction to representation



Topic: Bias and Generalization



The linear model is not very 
good: it has a high bias. I.e., 
it is not sufficiently influenced 
by the data

This model is overfitted.  It 
is overly influenced by the 
data. 

Data generated using this: 

g(x)

h(x)





What kind of model might exhibit high bias?
What kind might be prone to overfitting?

large network 
with 10000 

hidden
units

small 
network with 
3 hidden units





Stop training when you are learning the ‘noise’

10001->001
00100->111
01100->011
01001->000

11000->110
11010->101

Training set

Independent Test Set





10001->001
00100->111
01100->011
01001->000

11000->110
11010->101

Training set

Independent Test Set (used to 
determine performance of the 
trained network.

11010->100
11011->001

Independent Validation Set
(used to determine 
stopping time only)



Topic: Tips and Tricks



Adding Momentum

If you think of training as rolling down an error surface, then 
momentum makes sense: if things are going well, proceed with 
renewed confidence.

Make your current wt change depend not only on this error, but 
also on the size of your last weight change

Q: How do learning rate and momentum interact?



The Importance of Learning Rate....

Learning Rate

Some training techniques 
dynamically adapt 
learning rate. Simulated 
Annealing is one such.  
Helps to avoid getting 
stuck in local minima.



True Gradient Descent:

Accumulate delta-w values for all patterns in your training set, and 
modify weights only after you have seen each and every pattern.  
A.k.a. Batch Training. 

Stochastic Gradient Descent:

Update weights after each pattern.  This too may help to 
avoid local minima.  A.k.a. Online Learning. 



Other Tricks to Avoid Overfitting....

[1] Weight Decay:  large weights are reduced in proportion to 
their size.  Based on the observation that large weights and 
overfitting go hand in hand.



[2] Add Noise: 

This is sometimes effective in preventing overfitting.



Don’t make your network any larger than it need be..

Many techniques for ‘growing’ and ‘pruning’ 
networks exist.
E.g. Cascade Correlation (Scott Fahlman).



Topic: Constructive Algorithms, or 
How to grow a network

Example: Cascade Correlation (Scott Fahlman :)



We incrementally add 
units to the network, 
training just a few 
weights at a time.

[1] Train wts from input to output until stable
[2] Add a new unit, providing only incoming weights
     Train these weights to be maximally correlated with the remaining network error
[3] Freeze input wts, add new outgoing wts, retrain wts to output until stable
[4] Add new unit with incoming wts from all input and hidden units
[5] repeat and continue

Step 2 is clever!  It gets the unit “into the zone” so that it can best contribute to reducing the 
residual error



Topic: An Informal Taxonomy of Problems



What Kinds of Things Can Networks Learn?

A very rough taxonomy.....

1. Mapping from a rich domain, D, to a similar 
domain, D’

Examples:
Image processing
Audio processing
more generally: filtering.....

D

D’



Training 
images

After training 
present these

And the network 
produces these



D

D’
Often: unsupervised methods 
may be used (simple 
association)

Implementing non-
linear filtering for DSP

Prototype extraction and Noise 
removal

From a ‘cognitive’ viewpoint, 
this may be derided as 
‘associationism’

Can you think of 
plausible roles for this 
kind of model?



2: Mapping from one domain, D, to an 
entirely different, continuous, domain

D

Q

One use is for non-
linear multiple 
regression

Another example: 
mapping from sensory 
input to motor output



Startling recent result from Google





3: Mapping to a discrete, categorical 
domain

D

A C B

Mutually exclusive 
categories

Common situation: we want 
outputs to be interpretable as 
probability estimates that the 
input belongs to 1 of n discrete 
and non-overlapping 
categories.

Outputs should all lie in 
(0,1) and should sum to 1.



Classification 1: 2 output classes

First stab: Use a single linear output unit, with targets of 
1 and 0 for the two classes.  Classify based on a 
discriminant value of 0.5. 

Problem:  Much of our training effort will lie in approximating 
the target values (0,1) when all we care about is which side of 
the discriminant we are on.  So:  use a sigmoidal output 
function (logistic function): 



Some details: when using a non-linear output 
function, we should choose an appropriate non-
linear error function.  For logistic output units, 
we use the cross-entropy error function:

...which has a particularly simple ‘delta’ function:



Classification 2: Multinomial Classification

Simple generalization: for n classes, use n output 
units.  Error is based on cross-entropy, output 
function is the softmax output function

And again (fortunately): 



Take home lesson: 

If you are doing a classification problem, where 
your outputs should be regarded as probabilities, 
use the cross-entropy error function.



http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-
and-deep-learning/

It would be a good idea at this point to take time out to 
read the following excellent account of the history of neural 
network research, and how it has gone into and out of  
favour:

http://www.toptal.com/machine-learning/an-introduction-to-deep-
learning-from-perceptrons-to-deep-networks

And here’s a second overview.  Both go from the beginning 
to Deep Learning



Deep Learning

Recent application of ANNs to hard problems in the field 
of artificial intelligence & data mining, make use of networks 
with many layers. 

This has become known as Deep Learning, and is very much  
in vogue, e.g. in Google. 

Deep learning typically maps from a low-level input, such as  
a picture, to a high level symbolic representation. 

The mapping is through many levels.  Mapping from one 
level to the next may be supervised or unsupervised.



The return of the hype:

Geoff Hinton



One common approach. 

Start with a big data set of richly structured data (e.g. images). 

Use unsupervised learning (restricted 
Boltzmann machines) to learn statistical 
features of this set.

Then learn features from 
this layer in further layer. 

Repeat several times.



After training a stack of such layers, the final representation  
can be used as input to a fairly standard neural network, e.g. 
to do classification. 





“Deep Learning” Network



Food for thought: how  
does deep learning relate 
to the view of the nervous 
system offered by Hubel 
and Wiesel?







Deep Learning came about because of a conjunction 
of several elements:





Big Overarching Topic:
Representations and 

Features



Representations

<1 0 0 0 0 0 0 0> 

<0 1 0 0 0 0 0 0> 

<0 0 1 0 0 0 0 0> 

<0 0 0 1 0 0 0 0> 

<0 0 0 0 1 0 0 0>

<0.2 0.5 0.1 0.4 0.5 0.9 0.1 0.5> 

<0.4 0.4 0.2 0.6 0.4 0.7 0.2 0.1> 

<0.3 0.7 0.2 0.5 0.9 0.9 0.5 0.7> 

<0.1 0.8 0.1 0.4 0.3 0.2 0.6 0.7> 

<0.6 0.4 0.7 0.2 0.6 0.3 0.4 0.1>

localist distributed

robustness 

graceful degradation 

similarity relationships



Note:  the localist vs distributed representation issue applies 
really only to feedforward, input/output mapping networks.  If 
we regard RNNs as dynamical systems, then the same question 
appears rather differently: how rich is our state description.  
More on this later….



Localist Representations

Assume a 3-D input space:

How similar are these vectors:
(0,1,0) and (1,0,0)
(0,0,1) and (0,1,0)

Euclidian distance



Distributed Representations

How similar are these vectors?

(0.5,0.2,0.8) and (0.3,0.4,0.2)
(0.5,0.2,0.8) and (0.9,0.1,0.6)



We have a much more
constrained form of 
distributed representation.

What distance measure might we use here?

Distributed Representations

Here we allow each input to
be 0 or 1



2 possible encodings:

1: all values are 1 or 0
 ...corresponds to the corners of a hypercube
.... with n bits, we can represent 2^n patterns
.... distances between patterns fall into a few discrete 
sets.

2: all real values between 0 and 1 are allowed
...corresponds to the entire volume of the hypercube
...arbitrary precision/arbitrary closeness between 
patterns



Distributed Representations: some properties

• Graceful Degradation/Robustness

• Similarity and Generalization

• Content Addressability

• Pattern Completion

• Structured Mapping



Topic: Clustering to express similarity relations

Both data sets, and sets of network activations, are 
encountered as big sets of numbers.  Similarity 
relations within these sets of numbers determine the 
properties of the data sets.  

We need to be able to derive a way of looking at 
similarity relations among vectors. 

One such technique is Hierarchical Clustering.







We will experiment with hierarchical clustering in Lab 5.

As an exercise, what can
you say about the set of
patterns that cluster like
this?



Introduction to Cognitive Science, COMP 20090

Perhaps the first and most important decision we
make in developing a connectionist model is to 
decide how the elements that will feature within
our model are represented.

This does not necessarily imply any commitment
to a theory of cognitive representation, though you
might choose to make that link.

Topic: Horses for Courses: 
Developing Appropriate Representations



Example: encoding phonemes

Sejnowski and Rosenberg (1987): Nettalk

Three-layer network trained to ‘read’ English text; i.e. 
to map from spelling to phonemes

“caught” => /kɔt/
“laugh” => /læf/

Each presentation (input) 
consists of 7 letters: target 
letter with three letters on 
either side.

[ _ c a U g h t ]
localist encoding
(26 + 3 units) * 7



The NETtalk Network

AR35, Seth Bullock, 2001

7 groups of
29 input units

26 output units

80 hidden units

_ a _ c a t _ 7 letters of
text input

(after Hinton, 1989) target letter

teacher

/k/

target output





Feature-based output encoding

There are approximately 43 distinct sounds in most varieties 
of English.  These are the phonemes of the language.  Phonemes 
function contrastively:
       /pæt/  vs /bæt/     

Phoneme is an abstract notion.  /p/ is realized differently at the 
beginning and end of syllables.

English orthography is a poor guide to pronunciation.  Nettalk 
maps from a noisy orthography to a more principled 
phonemic spelling.  This is only one small step in the chain 
from text to speech.........



Similarity among phonemes:

Phonemes exhibit organization, with similarity based on place, 
type and manner of articulation

In many phonological theories, this is captured by a discrete 
set of features.  Each phoneme is a set of features (sometimes 
an unordered bag, sometimes a hierarchically structured 
collections... pick your theory)

Nettalk had 26 outputs, corresponding to 23 
articulatory features + 3 to encode stress and 
syllable boundaries.





p

t

k

b

d

g

m

n

ŋ

r

l

s ʃ z ʒ

f v
θ ð

English Consonants



localist letters 
(203 units)

80 hidden units

26 features: distributed 
phoneme encoding

Nettalk



Things to consider:

Why is the letter representation localist and the 
phoneme representation distributed?

What theory drives the choice of one form of
representation over another??



Perceptual Invariance: Different appearances of an object 
can be perceived as ``the same'', despite, e.g., changes in 
position or illumination, distortions, or partial occlusion by 
other objects. 

Huge challenge for artificial systems

Need to develop representations which are insensitive to 
‘surface’ variation and which correspond to the ways in 
which we carve up the flux of existence.

Topic: Invariance and Representation



Introduction to Cognitive Science, COMP 20090



Building a feature detector: 

Does a given feature exist in the input? 

Assume you are not primarily interested in *where* a  
feature is, just in whether it is present or not . . .



Human visual pattern recognition: 

We recognize visual elements even though they may be 

* At different locations 
* Of different sizes 
* and in different orientations.



Small example

How could we build a feature detector that has something
like this ability?

Consider just 
changes in location, 
and make the input 
space “simple”:

Positive Negative

0 1 1 1 0 0 0 0

0 1 0 1 1 1 0 0

1 0 1 0 0 1 1 1

0 1 1 0 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 1 1 0 1 1



Positive Negative

0 1 1 1 0 0 0 0

0 1 0 1 1 1 0 0

1 0 1 0 0 1 1 1

0 1 1 0 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 1 1 0 1 1

Imagine you are a hidden unit: what sum do you compute?

How might we train a network to recognize the pattern 
“...1 1 1...” irrespective of where it occurs?

This is the 
feature we seek



Designing a solution:

  How much of the solution should we “build in”?
  Constant tension between specificity and generality

  For now, we restrict the vision of each hidden node to 
  a portion of the input vector. 

  Let each hidden unit ‘see’ exactly three adjacent 
  inputs.  





Goal is shift-invariance, so we want ...111... to have 
a comparable effect, no matter where it occurs in
the input string

Tactic: constrain each group of 3 weights (+bias) to
be identical

All hidden-
output wts 
are likewise 
identical



Now, whenever ...111... occurs, some hidden unit is 
maximally activated.

Conversely, unless ...III... occurs no unit is maximally 
activated.  

Note the introduction of fixed-size receptive fields 
constrained the size of our hidden layer: the fields 
must span the input.

Receptive fields have natural biological counterparts



What are the pros and cons of the solution we have 
adopted here?

Gaussian receptive fields are common in visual processing 
(on-center/off-surround; off-center/on-surround).  Other 
cells may react preferentially to bars of specific 
orientations......



In a powerful deep learning network, we might have feature  
detectors for many kinds of features



Each set of units with a fixed weight vector is essentially 
analysing the whole image, one piece at a time, looking for the 
pattern it responds most sensitively to.

This is the “convolution” you may hear of in deep networks.


