
Connectionism 4

1: Bias, Generalization, and the craft of
training networks

2: Introduction to representation

Topic: Bias and Generalization

The linear model is not very
good: it has a high bias. I.e.,
it is not sufficiently influenced
by the data

This model is overfitted. It
is overly influenced by the
data.

Data generated using this:

g(x)

h(x)

What kind of model might exhibit high bias?
What kind might be prone to overfitting?

large network
with 10000

hidden
units

small
network with
3 hidden units

Stop training when you are learning the ‘noise’

10001->001
00100->111
01100->011
01001->000

11000->110
11010->101

Training set

Independent Test Set

10001->001
00100->111
01100->011
01001->000

11000->110
11010->101

Training set

Independent Test Set (used to
determine performance of the
trained network.

11010->100
11011->001

Independent Validation Set
(used to determine
stopping time only)

Topic: Tips and Tricks

Adding Momentum

If you think of training as rolling down an error surface, then
momentum makes sense: if things are going well, proceed with
renewed confidence.

Make your current wt change depend not only on this error, but
also on the size of your last weight change

Q: How do learning rate and momentum interact?

The Importance of Learning Rate....

Learning Rate

Some training techniques
dynamically adapt
learning rate. Simulated
Annealing is one such.
Helps to avoid getting
stuck in local minima.

True Gradient Descent:

Accumulate delta-w values for all patterns in your training set, and
modify weights only after you have seen each and every pattern.
A.k.a. Batch Training.

Stochastic Gradient Descent:

Update weights after each pattern. This too may help to
avoid local minima. A.k.a. Online Learning.

Other Tricks to Avoid Overfitting....

[1] Weight Decay: large weights are reduced in proportion to
their size. Based on the observation that large weights and
overfitting go hand in hand.

[2] Add Noise:

This is sometimes effective in preventing overfitting.

Don’t make your network any larger than it need be..

Many techniques for ‘growing’ and ‘pruning’
networks exist.
E.g. Cascade Correlation (Scott Fahlman).

Topic: Constructive Algorithms, or
How to grow a network

Example: Cascade Correlation (Scott Fahlman :)

We incrementally add
units to the network,
training just a few
weights at a time.

[1] Train wts from input to output until stable
[2] Add a new unit, providing only incoming weights
 Train these weights to be maximally correlated with the remaining network error
[3] Freeze input wts, add new outgoing wts, retrain wts to output until stable
[4] Add new unit with incoming wts from all input and hidden units
[5] repeat and continue

Step 2 is clever! It gets the unit “into the zone” so that it can best contribute to reducing the
residual error

Topic: An Informal Taxonomy of Problems

What Kinds of Things Can Networks Learn?

A very rough taxonomy.....

1. Mapping from a rich domain, D, to a similar
domain, D’

Examples:
Image processing
Audio processing
more generally: filtering.....

D

D’

Training
images

After training
present these

And the network
produces these

D

D’
Often: unsupervised methods
may be used (simple
association)

Implementing non-
linear filtering for DSP

Prototype extraction and Noise
removal

From a ‘cognitive’ viewpoint,
this may be derided as
‘associationism’

Can you think of
plausible roles for this
kind of model?

2: Mapping from one domain, D, to an
entirely different, continuous, domain

D

Q

One use is for non-
linear multiple
regression

Another example:
mapping from sensory
input to motor output

Startling recent result from Google

3: Mapping to a discrete, categorical
domain

D

A C B

Mutually exclusive
categories

Common situation: we want
outputs to be interpretable as
probability estimates that the
input belongs to 1 of n discrete
and non-overlapping
categories.

Outputs should all lie in
(0,1) and should sum to 1.

Classification 1: 2 output classes

First stab: Use a single linear output unit, with targets of
1 and 0 for the two classes. Classify based on a
discriminant value of 0.5.

Problem: Much of our training effort will lie in approximating
the target values (0,1) when all we care about is which side of
the discriminant we are on. So: use a sigmoidal output
function (logistic function):

Some details: when using a non-linear output
function, we should choose an appropriate non-
linear error function. For logistic output units,
we use the cross-entropy error function:

...which has a particularly simple ‘delta’ function:

Classification 2: Multinomial Classification

Simple generalization: for n classes, use n output
units. Error is based on cross-entropy, output
function is the softmax output function

And again (fortunately):

Take home lesson:

If you are doing a classification problem, where
your outputs should be regarded as probabilities,
use the cross-entropy error function.

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-
and-deep-learning/

It would be a good idea at this point to take time out to
read the following excellent account of the history of neural
network research, and how it has gone into and out of
favour:

http://www.toptal.com/machine-learning/an-introduction-to-deep-
learning-from-perceptrons-to-deep-networks

And here’s a second overview. Both go from the beginning
to Deep Learning

Deep Learning

Recent application of ANNs to hard problems in the field
of artificial intelligence & data mining, make use of networks
with many layers.

This has become known as Deep Learning, and is very much
in vogue, e.g. in Google.

Deep learning typically maps from a low-level input, such as
a picture, to a high level symbolic representation.

The mapping is through many levels. Mapping from one
level to the next may be supervised or unsupervised.

The return of the hype:

Geoff Hinton

One common approach.

Start with a big data set of richly structured data (e.g. images).

Use unsupervised learning (restricted
Boltzmann machines) to learn statistical
features of this set.

Then learn features from
this layer in further layer.

Repeat several times.

After training a stack of such layers, the final representation
can be used as input to a fairly standard neural network, e.g.
to do classification.

“Deep Learning” Network

Food for thought: how
does deep learning relate
to the view of the nervous
system offered by Hubel
and Wiesel?

Deep Learning came about because of a conjunction
of several elements:

Big Overarching Topic:
Representations and

Features

Representations

<1 0 0 0 0 0 0 0>

<0 1 0 0 0 0 0 0>

<0 0 1 0 0 0 0 0>

<0 0 0 1 0 0 0 0>

<0 0 0 0 1 0 0 0>

<0.2 0.5 0.1 0.4 0.5 0.9 0.1 0.5>

<0.4 0.4 0.2 0.6 0.4 0.7 0.2 0.1>

<0.3 0.7 0.2 0.5 0.9 0.9 0.5 0.7>

<0.1 0.8 0.1 0.4 0.3 0.2 0.6 0.7>

<0.6 0.4 0.7 0.2 0.6 0.3 0.4 0.1>

localist distributed

robustness

graceful degradation

similarity relationships

Note: the localist vs distributed representation issue applies
really only to feedforward, input/output mapping networks. If
we regard RNNs as dynamical systems, then the same question
appears rather differently: how rich is our state description.
More on this later….

Localist Representations

Assume a 3-D input space:

How similar are these vectors:
(0,1,0) and (1,0,0)
(0,0,1) and (0,1,0)

Euclidian distance

Distributed Representations

How similar are these vectors?

(0.5,0.2,0.8) and (0.3,0.4,0.2)
(0.5,0.2,0.8) and (0.9,0.1,0.6)

We have a much more
constrained form of
distributed representation.

What distance measure might we use here?

Distributed Representations

Here we allow each input to
be 0 or 1

2 possible encodings:

1: all values are 1 or 0
 ...corresponds to the corners of a hypercube
.... with n bits, we can represent 2^n patterns
.... distances between patterns fall into a few discrete
sets.

2: all real values between 0 and 1 are allowed
...corresponds to the entire volume of the hypercube
...arbitrary precision/arbitrary closeness between
patterns

Distributed Representations: some properties

• Graceful Degradation/Robustness

• Similarity and Generalization

• Content Addressability

• Pattern Completion

• Structured Mapping

Topic: Clustering to express similarity relations

Both data sets, and sets of network activations, are
encountered as big sets of numbers. Similarity
relations within these sets of numbers determine the
properties of the data sets.

We need to be able to derive a way of looking at
similarity relations among vectors.

One such technique is Hierarchical Clustering.

We will experiment with hierarchical clustering in Lab 5.

As an exercise, what can
you say about the set of
patterns that cluster like
this?

Introduction to Cognitive Science, COMP 20090

Perhaps the first and most important decision we
make in developing a connectionist model is to
decide how the elements that will feature within
our model are represented.

This does not necessarily imply any commitment
to a theory of cognitive representation, though you
might choose to make that link.

Topic: Horses for Courses:
Developing Appropriate Representations

Example: encoding phonemes

Sejnowski and Rosenberg (1987): Nettalk

Three-layer network trained to ‘read’ English text; i.e.
to map from spelling to phonemes

“caught” => /kɔt/
“laugh” => /læf/

Each presentation (input)
consists of 7 letters: target
letter with three letters on
either side.

[_ c a U g h t]
localist encoding
(26 + 3 units) * 7

The NETtalk Network

AR35, Seth Bullock, 2001

7 groups of
29 input units

26 output units

80 hidden units

_ a _ c a t _ 7 letters of
text input

(after Hinton, 1989) target letter

teacher

/k/

target output

Feature-based output encoding

There are approximately 43 distinct sounds in most varieties
of English. These are the phonemes of the language. Phonemes
function contrastively:
 /pæt/ vs /bæt/

Phoneme is an abstract notion. /p/ is realized differently at the
beginning and end of syllables.

English orthography is a poor guide to pronunciation. Nettalk
maps from a noisy orthography to a more principled
phonemic spelling. This is only one small step in the chain
from text to speech.........

Similarity among phonemes:

Phonemes exhibit organization, with similarity based on place,
type and manner of articulation

In many phonological theories, this is captured by a discrete
set of features. Each phoneme is a set of features (sometimes
an unordered bag, sometimes a hierarchically structured
collections... pick your theory)

Nettalk had 26 outputs, corresponding to 23
articulatory features + 3 to encode stress and
syllable boundaries.

p

t

k

b

d

g

m

n

ŋ

r

l

s ʃ z ʒ

f v
θ ð

English Consonants

localist letters
(203 units)

80 hidden units

26 features: distributed
phoneme encoding

Nettalk

Things to consider:

Why is the letter representation localist and the
phoneme representation distributed?

What theory drives the choice of one form of
representation over another??

Perceptual Invariance: Different appearances of an object
can be perceived as ``the same'', despite, e.g., changes in
position or illumination, distortions, or partial occlusion by
other objects.

Huge challenge for artificial systems

Need to develop representations which are insensitive to
‘surface’ variation and which correspond to the ways in
which we carve up the flux of existence.

Topic: Invariance and Representation

Introduction to Cognitive Science, COMP 20090

Building a feature detector:

Does a given feature exist in the input?

Assume you are not primarily interested in *where* a
feature is, just in whether it is present or not . . .

Human visual pattern recognition:

We recognize visual elements even though they may be

* At different locations
* Of different sizes
* and in different orientations.

Small example

How could we build a feature detector that has something
like this ability?

Consider just
changes in location,
and make the input
space “simple”:

Positive Negative

0 1 1 1 0 0 0 0

0 1 0 1 1 1 0 0

1 0 1 0 0 1 1 1

0 1 1 0 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 1 1 0 1 1

Positive Negative

0 1 1 1 0 0 0 0

0 1 0 1 1 1 0 0

1 0 1 0 0 1 1 1

0 1 1 0 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 1 1 0 1 1

Imagine you are a hidden unit: what sum do you compute?

How might we train a network to recognize the pattern
“...1 1 1...” irrespective of where it occurs?

This is the
feature we seek

Designing a solution:

 How much of the solution should we “build in”?
 Constant tension between specificity and generality

 For now, we restrict the vision of each hidden node to
 a portion of the input vector.

 Let each hidden unit ‘see’ exactly three adjacent
 inputs.

Goal is shift-invariance, so we want ...111... to have
a comparable effect, no matter where it occurs in
the input string

Tactic: constrain each group of 3 weights (+bias) to
be identical

All hidden-
output wts
are likewise
identical

Now, whenever ...111... occurs, some hidden unit is
maximally activated.

Conversely, unless ...III... occurs no unit is maximally
activated.

Note the introduction of fixed-size receptive fields
constrained the size of our hidden layer: the fields
must span the input.

Receptive fields have natural biological counterparts

What are the pros and cons of the solution we have
adopted here?

Gaussian receptive fields are common in visual processing
(on-center/off-surround; off-center/on-surround). Other
cells may react preferentially to bars of specific
orientations......

In a powerful deep learning network, we might have feature
detectors for many kinds of features

Each set of units with a fixed weight vector is essentially
analysing the whole image, one piece at a time, looking for the
pattern it responds most sensitively to.

This is the “convolution” you may hear of in deep networks.

