
Connectionism: Unit 3
Backpropagation



Weight Adjustment using the 
Technique of Gradient Descent



Fitting a model to data
There is a relationship evident 
between the two variables here 
(sadly, thoroughly non-
cognitive). 

We could model that 
relationship using a linear 
regression: 

 

Which line is the best?



This?

This?



Choosing among models in 
parameter space

The sum over all points p in 
our data set of the squared 
difference between the target 
value tp (here: actual fuel 
consumption) and the model's 
prediction yp, calculated from 
the input value xp (here: weight 
of the car) by equation 1.



Gradient Descent Algorithm
1. Choose some (random) initial values for the model parameters.  

2. Calculate the gradient G of the error function with respect to 
each model parameter.  

3. Change the model parameters so that we move a short distance 
in the direction of the greatest rate of decrease of the error, i.e., 
in the direction of -G.  

4. Repeat steps 2 and 3 until G gets close to zero.  



Gradient Descent contd.



It's a neural network!

y = w21x+w20



Gradient Descent for 2-layer 
linear networks

1. Initialize all weights to small random values.  

2. REPEAT until done  

1. For each weight wij set Δwij=0     

2. For each data point (x, t)p  

1. set input units to x 

2. compute output values 

3. For each weight wij set      



Learning rate



Multiple regression



Activation functions
Networks do more than fit straight lines to data. 

But to do that, we need to make the activation of a unit be some 
non-linear function of its net input. 

Popular activation functions are the logistic function and the tanh 
function.

What is the 
activation of the 
output unit in this 
network?



A better fit.....



Another data set



Before training



..then....



...later....



...and finally....



Error during training



Types of non-linear units



Binary Threshold Neurons (e.g. 
Perceptron output units)

• Inspired by the ‘all-or-nothing’ character of neural 
firing

• Net input:

• Output:



Rectified Linear Units

• Compute a linear weighted sum of inputs

• Output a non-linear function of the input

Surprisingly popular choice in modern deep learning networks



Logistic Sigmoidal Units

• Real-valued output

• Smooth, continuous, bounded

• Nice derivatives

• Very (excessively?) common

• Range: 0..1



Tanh Units

• Similar to logistic units

• Range: -1..1 (symmetrical about 0)



Back Propagation of 
Error  

(Backprop)



A trained network has learnt a mapping

Input patterns Output patterns

100010
011101
011010
001110
000111
100001

0110
1100
0011
1111
0001
1001



The mapping is a mathematical function, whose parameters 
are the weights

y = f(x)



The Problem: How do we find those weights?



Solution 1: Guess Them

J.  Schmidhuber, S. Hochreiter, Y. Bengio. Evaluating benchmark problems by 
random guessing. In S. C. Kremer and J. F. Kolen, eds., A Field Guide to 
Dynamical Recurrent Neural Networks. IEEE press, 2001.

J. Schmidhuber and S. Hochreiter. Guessing can outperform many long time 
lag algorithms. Technical Note IDSIA-19-96, IDSIA, May 1996

Not as daft as you might think!!

Requires fast machines and small problems.
Not a serious contender for serious problems.



Learning as Gradient Descent

Error surface for a 2-wt, 
linear network

Complex error surface for 
hypothetical network training 
problem



Mapping from input to output

0.5 1.0 -0.1 0.2

Input pattern: <0.5, 1.0,-0.1,0.2>

input layer

Reminder



Mapping from input to output

0.2 -0.5 0.8

0.5 1.0 -0.1 0.2

Input pattern: <0.5, 1.0,-0.1,0.2>

input layer

hidden layer



Mapping from input to output

0.2 -0.5 0.8

0.5 1.0 -0.1 0.2

-0.9 0.2 -0.1 0.7

Input pattern: <0.5, 1.0,-0.1,0.2>

input layer

hidden layer

Output pattern: <-0.9, 0.2,-0.1,0.7>

output layer
feed-

forward 
processing



Calculating error

0.6 0.7 -0.4 -0.6

Target pattern: <-0.3, 0.9,-0.5,0.1> 
Output pattern: <-0.9, 0.2, -0.1, 0.7> 

errors at output
Back

Propagation

of error

Output errors are used to compute changes for weights from 
hidden to outputs

for changing these



Calculating error

d1 d2 d3

0.6 0.7 -0.4 -0.6

Generalised 
errors at 

hidden layer

Target pattern: <-0.3, 0.9,-0.5,0.1> 
Output pattern: <-0.9, 0.2, -0.1, 0.7> 

Back

Propagation

of error

Generalised errors are computed for hidden notes, so 
that we can compute changes for weights from input to hidden

for changing these



An informal account of BackProp
For each pattern in the training set: 

  Compute the error at the output nodes

Compute Δw for each wt in 2nd layer

Compute delta (generalized error 
expression) for hidden units

Compute Δw for each wt in 1st layer

After amassing Δw for all weights and all patterns, change each wt a 
little bit, as determined by the learning rate



For each pattern in the training set: 

  Compute the error at the output nodes

Compute Δw for each wt in 2nd layer

Compute delta (generalized error 
expression) for hidden units

Compute Δw for each wt in 1st layer

Each pass through the whole set of patterns = 1 epoch 

In classical backprop, weight changes are made at the end of the 
epoch



The Delta Rule

This is the amount we would change wij based 
on the pattern we just presented

This is the current activation of the feeding unit

This term depends on the contribution of wij to  
the error we are observing.  Its form will depend  
on which weight this is, and what the activation of  
the 

wij is the link to unit i from unit j (the feeding unit)

This is the learning rate.  It scales the magnitude 
of the weight change, to ensure small steps.



For the sake of simplicity, we will typically 
omit the subscript p which indexes the patterns.



Learning by Backpropagation of Error: 1

We have presented a pattern p to the network, and it 
produced some (incorrect) output

0.3   0.2   -0.4   0.2 Output

-1     0      1      1 Target What is the 
error at the i-th 
output unit?



Learning by Backpropagation of Error: II

Node i

Node j

Weight ij

We want to alter wij 

in proportion to its 
contribution to the 
overall error.  

This is most 
straightforward, 
when Node i is an 
output node



Learning by Backpropagation of Error: III

Let E be the sum of the 
error at the output 
units, then 

is the ‘partial derivative of 
the error with respect to 
weight wij’. 

It provides a measure 
of how much E will 
change if we make a 
small change to wij. 

Learning Rate

Partial differentiation: assume all other variables are fixed, and 
just look at how one thing (E) changes as we wiggle another (wij)



Learning by Backpropagation of Error: IV

Node i

Node j

Weight ij

From that, we derive a general 
expression for the change to 
wij, based on the error at a 
given pattern:

‘delta’ is a generalized error 
term associated with Node i, 
and its meaning will differ, 
depending on whether i indexes 
an output node or not.



Learning by Backpropagation of Error: V

Node i

Node j

Weight ij

For a linear output unit:

For any output unit:

This is the derivative (rate of change) of the activation function



Logistic function

Derivative of 
logistic function

(= rate of change)



Logistic function

Derivative of 
logistic function



Learning by Backpropagation of Error: VI

Node i

Wij

When Node i is not an output node, delta, 
the error term, is based on a sum of all the 
errors to which this node contributes. 



Recall.............
For each pattern in the training set: 

  Compute the error at the output nodes

Compute Δw for each wt in 2nd set of 
weights
Compute delta (generalized error 
expression) for hidden units

Compute Δw for each wt in 1st set of 
weights

After amassing Δw for all weights and all patterns, change each wt a 
little bit, as determined by the learning rate


